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Executive Summary 
 
This chapter assesses the scientific literature describing expectations for near-term climate (present through 
mid-century). Unless otherwise stated, “near-term” change and the projected changes below are for the 
period 2016–2035 relative to the reference period 1986–2005. Atmospheric composition (apart from CO2 – 
see Chapter 12) and air quality projections through to 2100 are also assessed.  
 
Decadal Prediction 
 
The non-linear and chaotic nature of the climate system imposes natural limits on the extent to which skillful 
predictions of climate statistics may be made. Model-based "predictability" studies, which probe these limits 
and investigate the physical mechanisms involved, support the potential for the skillful prediction of annual 
to decadal average temperature and, to a lesser extent precipitation. 

Predictions for averages of temperature, over large regions of the planet and for the global mean, 
exhibit positive skill when verified against observations for forecast periods up to ten years (high 
confidence1). [Section 11.2.3; Figures 11.3 and 11.4] Predictions of precipitation over some land areas also 
exhibit positive skill. Decadal prediction is a new endeavour in climate science. The level of quality for 
climate predictions of annual to decadal average quantities is assessed from the past performance of 
initialized predictions and non-initialized simulations. 

In current results, observation-based initialization is the dominant contributor to the skill of predictions of 
annual mean temperature for the first few years and to the skill of predictions of the global-mean surface 
temperature and the temperature over the North Atlantic, regions of the South Pacific and the tropical Indian 
Ocean for longer periods (high confidence). [Section 11.2.3, Figures 11.3–11.5] Beyond the first few years 
the skill for annual and multi-annual averages of temperature and precipitation is due mainly to the specified 
radiative forcing (high confidence). 
 
Projected Changes in Radiative Forcing of Climate 
 
For greenhouse gas forcing the new RCP scenarios are similar in magnitude and range to the AR4 
SRES scenarios in the near-term, but for aerosol and ozone precursor emissions the RCPs are much 
lower than SRES by factors of 1.2 to 3. For these emissions the spread across RCPs by 2030 is much 
narrower than between scenarios that considered current legislation and maximum technically feasible 
emission reductions (factors of two). In the near term, the SRES CMIP3 results, which did not incorporate 
current legislation on air pollutants, include up to three times more anthropogenic aerosols than RCP CMIP5 
results (high confidence), and thus the CMIP5 global mean temperatures may be up to 0.2°C warmer than if 
forced with SRES aerosol scenarios (medium confidence). [10.3.1.1.3, Figure 10.4, 11.3.1.1, 11.3.5.1, 
11.3.6.1, Figure 11.25, AII.2.16–AII.2.22, AII.6.8]  
 
Including uncertainties for the chemically reactive greenhouse gas methane gives a range in 
concentration that is 30% wider than the spread in RCP concentrations used in CMIP5 models 
(likely2). By 2100 this range extends 520 ppb above RCP8.5 and 230 ppb below RCP2.6 (likely), reflecting 
uncertainties in emissions from agricultural, forestry, and land-use sources, in atmospheric lifetimes, and in 
chemical feedbacks, but not in natural emissions. [11.3.5.1] 
 

                                                 
1 In this Report, the following summary terms are used to describe the available evidence: limited, medium, or robust; 
and for the degree of agreement: low, medium, or high. A level of confidence is expressed using five qualifiers: very 
low, low, medium, high, and very high, and typeset in italics, e.g., medium confidence. For a given evidence and 
agreement statement, different confidence levels can be assigned, but increasing levels of evidence and degrees of 
agreement are correlated with increasing confidence (see Section 1.4 and Box TS.1 for more details). 
2 In this Report, the following terms have been used to indicate the assessed likelihood of an outcome or a result: 
Virtually certain 99–100% probability, Very likely 90–100%, Likely 66–100%, About as likely as not 33–66%, 
Unlikely 0–33%, Very unlikely 0–10%, Exceptionally unlikely 0–1%. Additional terms (Extremely likely: 95–100%, 
More likely than not >50–100%, and Extremely unlikely 0–5%) may also be used when appropriate. Assessed 
likelihood is typeset in italics, e.g., very likely (see Section 1.4 and Box TS.1 for more details). 
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Emission reductions aimed at decreasing local air pollution could have a near-term impact on climate 
(high confidence). Short-lived air pollutants have opposing effects: cooling from sulphate and nitrate; 
warming from black carbon aerosol, carbon monoxide and methane. Anthropogenic CH4 emission 
reductions (25%) phased in by 2030 would decrease surface ozone and reduce warming averaged over 
2036–2045 by about 0.2°C (medium confidence). Combined reductions (>75%) of black carbon and co-
emitted species on top of methane reductions would further reduce warming (low confidence), but 
uncertainties increase. [Section 7.6, Chapter 8, 11.3.6.1, Figure 11.24a, 8.7.2.2.2; AII.7.5a] 
 
Projected Changes in Near-Term Climate 
 
Projections of near-term climate show modest sensitivity to alternative RCP scenarios on global scales, 
but aerosols are an important source of uncertainty on both global and regional scales. [11.3.1, 
11.3.6.1] 
 
Projected Changes in Near-Term Temperature 
 
The projected change in global mean surface air temperature will likely be in the range 0.3–0.7°C 
(medium confidence). This projection is valid for the four RCP scenarios and assumes there will be no 
major volcanic eruptions or secular changes in total solar irradiance before 2035. A future volcanic eruption 
similar to the 1991 eruption of Mount Pinatubo would cause a rapid drop in global mean surface air 
temperature of several tenths °C in the following year, with recovery over the next few years. Possible future 
changes in solar irradiance could influence the rate at which global mean surface air temperature increases, 
but there is high confidence that this influence will be small in comparison to the influence of increasing 
concentrations of greenhouse gases in the atmosphere. [11.3.6, Figure 11.25] 
 
It is more likely than not that the mean global mean surface air temperature for the period 2016–2035 
will be more than 1°C above the mean for 1850–1900, and very unlikely that it will be more than 1.5°C 
above the 1850-1900 mean (medium confidence). [11.3.6.3] 
 
In the near-term, differences in global mean surface air temperature across RCP scenarios for a single 
climate model are typically smaller than across climate models for a single RCP scenario. In 2030, the 
CMIP5 ensemble median values differ by at most 0.2ºC between RCP scenarios, whereas the model spread 
(17–83% range) for each RCP is about 0.4ºC. The inter-scenario spread increases in time: by 2050 it is 
0.8ºC, whereas the model spread for each scenario is only 0.6ºC. Regionally, the largest differences in 
surface air temperature between RCP2.6 and RCP8.5 are found in the Arctic. [11.3.2.1.1, 11.3.6.1, 11.3.6.3, 
Figure 11.24ab, Table AII.7.5] 
 
It is very likely that anthropogenic warming of surface air temperature will proceed more rapidly over 
land areas than over oceans, and that anthropogenic warming over the Arctic in winter will be greater 
than the global mean warming over the same period, consistent with the AR4. Relative to natural 
internal variability, near-term increases in seasonal mean and annual mean temperatures are expected to be 
larger in the tropics and subtropics than in mid-latitudes (high confidence). [11.3.2, Figures 11.9 and 11.10]. 
 
Projected Changes in the Water Cycle and Atmospheric Circulation 
 
Zonal mean precipitation will very likely increase in high and some of the mid latitudes, and will more 
likely than not decrease in the subtropics. At more regional scales precipitation changes may be 
influenced by anthropogenic aerosol emissions and will be strongly influenced by natural internal 
variability. [11.3.2, Figures 11.12 and 11.13] 
 
Increases in near-surface specific humidity over land are very likely. Increases in evaporation over 
land are likely in many regions. There is low confidence in projected changes in soil moisture and surface 
run off. [11.4.2; Figure 11.14] 
 
It is likely that the descending branch Hadley Circulation and the Southern Hemisphere mid-latitude 
westerlies will shift poleward. It is likely that in austral summer the projected recovery of stratospheric 
ozone and increases in greenhouse gas concentrations will have counteracting impacts on the width of the 
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Hadley Circulation and the meridional position of the Southern Hemisphere storm track. Therefore, it is 
likely that in the near-term the poleward expansion of the descending branch southern branch of the Hadley 
circulation and the Southern Hemisphere mid-latitude westerlies in austral summer will be less rapid than in 
recent decades. [11.3.2] 
 
There is low confidence in near-term projections of the position and strength of Northern Hemisphere 
storm tracks. Natural internal variations are larger than the projected impact of greenhouse gases in the 
near-term (medium confidence). [11.3.2] 
 
Projected Changes in the Ocean and Cryosphere 
 
It is very likely that globally-averaged surface and vertically-averaged ocean temperatures will increase 
in the near-term. It is likely that there will be increases in salinity in the tropical and (especially) subtropical 
Atlantic, and decreases in the western tropical Pacific over the next few decades. The Atlantic Meridional 
Overturning Circulation is likely to decline by 2050 (medium confidence). However, the rate and magnitude 
of weakening is very uncertain, and due to large internal variability there are decades when increases are also 
to be expected. [11.3.3] 
 
It is very likely that there will be further shrinking and thinning of Arctic sea ice cover, and decreases 
of northern high-latitude spring time snow cover and near surface permafrost (see glossary) as global 
mean surface temperature rises. For high greenhouse gas emissions such as those corresponding to 
RCP8.5, a nearly ice-free Arctic Ocean (sea ice extent less than 1 × 106 km2) in September is likely before 
mid-century (medium confidence). This assessment is based on a subset of models that most closely 
reproduce the climatological mean state and 1979 to 2012 trend of Arctic sea ice cover. There is low 
confidence in projected near-term decreases in the Antarctic sea ice extent and volume. [11.3.4] 
 
Projected Changes in Extremes 
 
In most regions the frequency of warm days and warm nights will likely increase in the next decades, 
while that of cold days and cold nights will decrease. Models project near-term increases in the duration, 
intensity and spatial extent of heat-waves and warm spells. These changes may proceed at a different rate 
than the mean warming. For example, several studies project that European high-percentile summer 
temperatures warm faster than mean temperatures [11.3.2.5.1; Figures 11.17 and 11.18]. 
 
The frequency and intensity of heavy precipitation events over land will likely increase on average in 
the near term. However, this trend will not be apparent in all regions because of natural variability and 
possible influences of anthropogenic aerosols and land use change. [11.3.2.5.2, Figures 11.17 and 11.18] 
 
There is low confidence in basin-scale projections of changes in intensity and frequency of tropical 
cyclones (TCs) in all basins to the mid-21st century. This low confidence reflects the small number of 
studies exploring near-term TC activity, the differences across published projections of TC activity, and the 
large role for natural variability and non-greenhouse forcing of TC activity up to the mid-21st century. There 
is low confidence in near-term projections for increased TC intensity in the North Atlantic, which is in part 
due to projected reductions in North Atlantic aerosols loading. [11.3.2.5.3] 
 
Projected Changes in Air Quality  
  
Background levels of surface ozone (O3) are projected on continental scales to decrease over most 
regions as rising temperatures enhance global O3 destruction (high confidence) but to increase with 
rising methane (high confidence). Local emissions, combined with background levels and meteorological 
conditions, conducive to the formation and accumulation of ozone and particulate matter pollution, are 
known to produce extreme pollution episodes on local and regional scales. There is low confidence in 
projecting changes in meteorological blocking associated with extreme episodes. All else being equal, 
warmer temperatures are expected to trigger positive feedbacks in chemistry and local emissions, further 
enhancing pollution levels (medium confidence). [11.3.5, 11.3.5.2, AII.4.2, AII.7.2, AII.7.3, Box 14.2] 
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On a continental scale, projected air pollution levels are lower under the new RCP scenarios than 
under the SRES scenarios because the SRES did not incorporate air quality legislation (high 
confidence). The range across RCP scenarios is driven primarily by chemically reactive emissions, 
with climate change playing a secondary but more uncertain role (medium confidence). By 2100, 
surface ozone increases by about 8 ppb globally in the doubled-methane scenario (RCP8.5) relative to 
the stable-methane pathways (RCP4.5/6.0; high confidence). [11.3.5.2; Figures 11.22 and 11.23ab, 
AII.7.1–AII.7.4] 
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11.1 Introduction 
 
This chapter describes current scientific expectations for ‘near-term’ climate. Here ‘near term’ refers to 
climate from the present to mid-century during which the climate response to different emissions scenarios is 
generally similar. Greatest emphasis is given to the period 2016–2035, though some information on 
projected changes before and after this period (up to mid-century) is also assessed. An assessment of the 
scientific literature relating to atmospheric composition (except carbon dioxide, which is addressed in 
Chapter 12) and air quality for the near-term and beyond to 2100 is also provided. 
 
This emphasis on near-term climate arises from (i) a recognition of its importance to decision makers in 
government and industry; (ii) an increase in the international research effort aimed at improving our 
understanding of near-term climate; and (iii) a recognition that near-term projections are generally less 
sensitive to differences between future emissions scenarios than are long-term projections. Climate 
prediction on seasonal to multi-annual timescales require accurate estimates of the initial climate state with 
less dependence on changes in external forcing3over the period. On longer timescales climate projections 
rely on projections of external forcing with little reliance on the initial state of internal variability. Estimates 
of near-term climate depend partly on the committed change (caused by the inertia of the oceans as they 
respond to historical external forcing), the time evolution of internally-generated climate variability, and the 
future path of external forcing. Near-term climate is sensitive to rapid changes in some short-lived climate 
forcing agents (Jacobson and Streets, 2009; Wigley et al., 2009; UNEP and WMO, 2011; Shindell et al., 
2012b). 
 
The need for near-term climate information has spawned a new field of climate science: decadal climate 
prediction (Smith et al. (2007); (Meehl et al., 2009b; Meehl et al., 2013d). The Coupled Model 
Intercomparison Project phase 5 (CMIP5) experimental protocol includes a sequence of near-term 
predictions (1–10 years) where observation-based information is used to initialize the models used to 
produce the forecasts. The goal is to exploit the predictability of internally-generated climate variability as 
well as that of the externally forced component. The result depends on the ability of current models to 
reproduce the observed variability as well as on the accurate depiction of the initial state (see Box 11.1). 
Skilful multi-annual to decadal climate predictions are being produced although technical challenges remain 
that need to be overcome in order to improve skill. These challenges are now being addressed by the 
scientific community.  
 
Climate change experiments with models which do not depend on initial condition but on the history and 
projection of climate forcings (often referred to as ‘uninitialized’ or ‘non-initialized’ projections or simply as 
‘projections’) are another component of CMIP5. Such projections have been the main focus of assessments 
of future climate in previous IPCC assessments and are the considered in Chapters 12–14. The main focus of 
attention in past assessments has been on the properties of projections for the late 21st century and beyond. 
Projections also provide valuable information on externally-forced changes to near-term climate, however, 
and are an important source of information that complements information from the predictions. They are also 
assessed in this chapter. 
 
The objectives of this chapter are to assess the state of the science concerning both near-term predictions and 
near-term projections. CMIP5 results are considered for the near term as are other published near-term 
predictions and projections. The chapter consists of four major assessments: 
(i) the scientific basis for near-term prediction as reflected in estimates of predictability (see Box 11.1), 

and the dynamical and physical mechanisms underpinning predictability, and the processes that limit 
predictability (see Section 11.2); 

(ii) the current state of knowledge in near-term prediction (see Section 11.2). Here the emphasis is placed 
on the results from the decadal (10-year) multi-model prediction experiments in the CMIP5 database. 

(iii) the current state of knowledge in near-term projection (see Section 11.3). Here the emphasis is on 
what the climate in next few decades may look like relative to 1986–2005, based on near-term 
projections (i.e., the forced climatic response). The focus is on the ‘core’ near-term period (2016–

                                                 
3 Seasonal-to-interannual predictions typically include the impact of external forcing. 
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2035), but some information prior to this period and out to mid-century is also discussed. A key issue 
is when, where and how the signal of externally-forced climate change is expected to emerge from the 
background of natural climate variability; 

(iv) projected changes in atmospheric composition and air quality, and their interactions with climate 
change during the near-term and beyond, including new findings from the Atmospheric Chemistry and 
Climate Model IntercomParison (ACCMIP) initiative. 

 
[START BOX 11.1 HERE] 
 
Box 11.1: Climate Simulation, Projection, Predictability and Prediction 
 
This section outlines some of the ideas and the terminology used in the Chapter. 
 
Internally generated and externally forced climate variability 
It is useful for purposes of analysis and description to consider the pre-industrial climate system as being in a 
state of climatic equilibrium with a fixed atmospheric composition and an unchanging sun. In this idealized 
state, naturally occurring processes and interactions within the climate system give rise to ‘internally 
generated’ climate variability on many timescales (as discussed in Chapter 1). Variations in climate may also 
result due to features ‘external’ to this idealized system. Forcing factors, such as volcanic eruptions, solar 
variations, anthropogenic changes in the composition of the atmosphere, land use change etc., give rise to 
‘externally forced’ climate variations. In this sense climate system variables such as annual mean 
temperatures (as in Box 11.1, Figure 1 for instance) may be characterized as a combination of externally 
forced and internally generated components with T(t) = Tf(t) + Ti(t). This separation of T, and other climate 
variables, into components is useful when analyzing climate behaviour but does not, of course, mean that the 
climate system is linear or that externally forced and internally generated components do not interact. 
 
Climate simulation 
A climate simulation is a model-based representation of the temporal behaviour of the climate system under 
specified external forcing and boundary conditions. The result is the modelled response to the imposed 
external forcing combined with internally generated variability. The thin yellow lines in Box 11.1, Figure 1 
represent an ensemble of climate simulations begun from pre-industrial conditions with imposed historical 
external forcing. The imposed external conditions are the same for each ensemble member and differences 
among the simulations reflect differences in the evolutions of the internally generated component. 
Simulations are not intended to be forecasts of the observed evolution of the system (the black line in Box 
11.1, Figure 1) but to be possible evolutions that are consistent with the external forcings. 
 
In practice, and in Box 11.1, Figure 1, the forced component of the temperature variation is estimated by 
averaging over the different simulations of T(t) with Tf(t) the component that survives ensemble averaging 
(the red curve) while Ti(t) averages to near zero for a large enough ensemble. The spread among individual 
ensemble members (from these or pre-industrial simulations) and their behaviour with time provides some 
information on the statistics of the internally generated variability, but not a complete picture. 
 
Climate projection 
A climate projection is a climate simulation that extends into the future based on a scenario of future external 
forcing. The simulations in Box 11.1, Figure 1 become climate projections for the period beyond 2005 where 
the results are based on the RCP4.5 forcing scenario (see Chapters 1 and 8 for a discussion of forcing 
scenarios). 
 
Climate prediction, climate forecast 
A climate prediction or climate forecast is a statement about the future evolution of some aspect of the 
climate system encompassing both forced and internally generated components. Climate predictions do not 
attempt to forecast the actual day-to-day progression of the system but instead the evolution of some climate 
statistic such as seasonal, annual or decadal averages or extremes, which may be for a particular location, or 
a regional or global average. Climate predictions are often made with models that are the same as, or similar 
to, those used to produce climate simulations and projections (assessed in Chapter 9). A climate prediction 
typically proceeds by integrating the governing equations forward in time from observation-based initial 
conditions. A decadal climate prediction combines aspects of both a forced and an initial condition problem 
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as illustrated in Box 11.1, Figure 2. At short timescales the evolution is largely dominated by the initial state 
while at longer timescales the influence of the initial conditions decreases and the importance of the forcing 
increases as illustrated in Box 11.1, Figure 4. Climate predictions may also be made using statistical methods 
which relate current to future conditions using statistical relationships derived from past system behaviour.  
 
Because of the chaotic and non-linear nature of the climate system small differences, in initial conditions or 
in the formulation of the forecast model, result in different evolutions of forecasts with time. This is 
illustrated in Box 11.1, Figure 1, which displays an ensemble of forecasts of global annual mean temperature 
(the thin purple lines) initiated in 1998. The individual forecasts are begun from slightly different initial 
conditions, which are observation-based estimates of the state of the climate system. The thick green line is 
the average of these forecasts and is an attempt to predict the most probable outcome and to maximize 
forecast skill. In this schematic example, the 1998 initial conditions for the forecasts are warmer than the 
average of the simulations. The individual and ensemble mean forecasts exhibit a decline in global 
temperature before beginning to rise again. In this case, initialization has resulted in more realistic values for 
the forecasts than for the corresponding simulation, at least for short lead times in the forecast. As the 
individual forecasts evolve they diverge from one another and begin to resemble the projection results. 
 
A probabilistic view of forecast behaviour is depicted schematically in Box 11.1, Figure 3. The probability 
distribution associated with the climate simulation of temperature evolves in response to external forcing. By 
contrast, the probability distribution associated with a climate forecast has a sharply peaked initial 
distribution representing the comparatively small uncertainty in the observation-based initial state. The 
forecast probability distribution broadens with time until, ultimately, it becomes indistinguishable from that 
of an uninitialized climate projection. 
 
Climate predictability 
The term ‘predictability’, as used here, indicates the extent to which even minor imperfections in the 
knowledge of the current state or of the representation of the system limits knowledge of subsequent states. 
The rate of separation or divergence of initially close states of the climate system with time (as for the light 
purple lines in Box 11.1, Figure 1), or the rate of displacement and broadening of its probability distribution 
(as in Box 11.1, Figure 3) are indications of the system's predictability. If initially close states separate 
rapidly (or the probability distribution broadens quickly towards to climatological distribution), the 
predictability of the system is low and vice versa. Formally, predictability in climate science is a feature of 
the physical system itself, rather than of our ‘ability to make skilful predictions in practice’. The latter 
depends on the accuracy of models and initial conditions and on the correctness with which the external 
forcing can be treated over the forecast period.  
 
Forecast quality, forecast skill 
Forecast (or prediction) quality measures the success of a prediction against observation-based information. 
Forecasts made for past cases, termed retrospective forecasts or hindcasts, may be analyzed to give an 
indication of the quality that may be expected for future forecasts for a particular variable at a particular 
location.  
 
The relative importance of initial conditions and of external forcing for climate prediction, as depicted 
schematically in Box 11.1, Figure 2, is further illustrated in the example of Box 11.1, Figure 4 which plots 
correlation measures of both forecast skill and predictability for temperature averages over land and sea 
ranging from a month to a decade. Initialized forecasts exhibit enhanced values compared to uninitialized 
simulations for shorter time averages but the advantage declines as averaging time increases and the forced 
component grows in importance. 
 
[INSERT BOX 11.1, FIGURE 1 HERE] 
Box 11.1, Figure 1: The evolution of observation-based global mean temperature T (the black line) as the difference 
from the 1986–2005 average together with an ensemble of externally forced simulations to 2005 and projections based 
on the RCP4.5 scenario thereafter (the yellow lines). The model-based estimate of the externally forced component Tf 
(the red line) is the average over the ensemble of simulations. To the extent that the red line correctly estimates the 
forced component, the difference between the black and red lines is the internally generated component Ti for global 
mean temperature. An ensemble of forecasts of global annual mean temperature, initialized in 1998, is plotted as thin 
purple lines and their average, the ensemble mean forecast, as the thick green line. The grey areas along the axis 
indicate the presence of external forcing associated with volcanoes. 
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[INSERT BOX 11.1, FIGURE 2 HERE] 
Box 11.1, Figure 2: A schematic illustrating the progression from an initial-value based prediction at short timescales 
to the forced boundary-value problem of climate projection at long timescales. Decadal prediction occupies the middle 
ground between the two (based on Meehl et al. (2009b)). 
 
[INSERT BOX 11.1, FIGURE 3 HERE] 
Box 11.1, Figure 3: A schematic representation of prediction in terms of probability. The probability distribution 
corresponding to a forced simulation is in red with the deeper shades indicating higher probability. The probabilistic 
forecast is in blue. The sharply peaked forecast distribution based on initial conditions broadens with time as the 
influence of the initial conditions fades until the probability distribution of the initialized prediction approaches that of 
an uninitialized projection (based on Branstator and Teng (2010)). 
 
[INSERT BOX 11.1, FIGURE 4 HERE] 
Box 11.1, Figure 4: An example of the relative importance of initial conditions and external forcing for climate 
prediction and predictability. The global average of the correlation skill score of ensemble mean initialized forecasts are 
plotted as solid orange lines and the corresponding model-based predictability measure as dashed orange lines. The 
green lines are the same quantities but for uninitialized climate simulations. Results are for temperature averaged over 
periods from a month to a decade. Values plotted for the monthly average correspond to the first month, those for the 
annual average to the first year and so on up to the decadal average (based on (Boer et al., 2013)). 
 
[END BOX 11.1 HERE] 
 
11.2 Near-Term Predictions 
 
11.2.1 Introduction 
 
11.2.1.1 Predictability Studies 
 
The innate behaviour of the climate system imposes limits on the ability to predict its evolution. Small 
differences in initial conditions, external forcing and/or in the representation of the behaviour of the system, 
produce differences in results that limit useful prediction. Predictability studies estimate predictability limits 
for different variables and regions.  
 
11.2.1.2 Prognostic Predictability Studies 
 
Prognostic predictability studies analyze the behaviour of models integrated forward in time from perturbed 
initial conditions. The study of Griffies and Bryan (1997) is one of the earliest studies of the predictability of 
internally generated decadal variability in a coupled atmosphere/ocean climate model. The study 
concentrates on the North Atlantic and the subsurface ocean temperature while the subsequent studies of 
Boer (2000) and Collins (2002) deal mainly with surface temperature. Long timescale temperature 
variability in the North Atlantic has received considerable attention together with its possible connection to 
the variability of the Atlantic Meridional Overturning Circulation (AMOC) in predictability studies by 
Collins and Sinha (2003); Collins et al. (2006); Dunstone and Smith (2010); Dunstone et al. (2011); Grotzner 
et al. (1999); Hawkins and Sutton (2009); Latif et al. (2006); Latif et al. (2007); Msadek et al. (2010); 
Persechino et al. (2012); Pohlmann et al. (2004);Pohlmann et al. (2013); Swingedouw et al. (2013); and 
Teng et al. (2011). The predictability of the AMOC varies among models and, to some extent, with initial 
model states, ranging from several to 10 or more years. The predictability values are model-based and the 
realism of the simulated AMOC in the models cannot be easily judged in the absence of a sufficiently long 
record of observation-based AMOC values. Many predictability studies are based on perturbations to surface 
quantities but Sevellec and A. Fedorov (2012) and Zanna (2012) note that small perturbations to deep ocean 
quantities may also affect upper ocean values. The predictability of the North Atlantic SST is typically 
weaker than that of the AMOC and the connection between the predictability of the AMOC and the SST is 
inconsistent among models. 
 
Prognostic predictability studies of the Pacific are less plentiful although Pacific Decadal Variability (PDV) 
mechanisms (including the Pacific Decadal Oscillation (PDO) and the Interdecadal Pacific Oscillation (IPO) 
have received considerable study (see Chapters 2, 12). Power and Colman (2006) find predictability on 
multi-year timescales in SST and on decadal time-scales in the sub-surface ocean temperature in the off-
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equatorial South Pacific in their model. Power et al. (2006) find no evidence for the predictability of 
interdecadal changes in the nature of ENSO impacts on Australian rainfall. Sun and Wang (2006) suggest 
that some of the temperature variability linked to PDV can be predicted approximately 7 years in advance. 
Teng et al. (2011) investigate the predictability of the first two EOFs of annual mean SST and upper ocean 
temperature identified with PDV and find predictability of the order of 6–10 years. Meehl et al. (2010) 
consider the predictability of 19-year filtered Pacific SSTs in terms of low order EOFs and find predictability 
on these long timescales. 
 
Hermanson and Sutton (2010) report that predictable signals in different regions and for different variables 
may arise from differing initial conditions and that ocean heat content is more predictable than atmospheric 
and surface variables. Branstator and Teng (2010) analyze upper ocean temperatures, and some SSTs, for 
averages over the North Atlantic, North Pacific and the tropical Atlantic and Pacific in the NCAR model. 
Predictability associated with the initial state of the system decreases while that due to external forcing 
increases with time. The ‘cross-over’ time, when the two contributions are equal is longer in extratropical 
(7–11 years) compared to tropical (2 years) regions and in the North Atlantic compared to the North Pacific. 
Boer et al. (2013) estimate surface air (rather than upper ocean) temperature predictability in the CCCma 
model and find a cross-over time (using a different measure) on the order of 3 years when averaged over the 
globe.  
 
11.2.1.3 Diagnostic Predictability Studies 
 
Diagnostic predictability studies are based on analyses of the observed record or the output of climate 
models. Because long data records are needed, diagnostic multi-annual to decadal predictability studies 
based on observational data are comparatively few. Newman (2007) and Alexander et al. (2008) develop 
multivariate empirical Linear Inverse Models (LIMs) from observation-based SSTs and find predictability 
for ENSO and PDV type patterns that are generally limited to the order of a year although exceeding this in 
some areas. Zanna (2012) develops a LIM based on Atlantic SSTs and infers the possibility of decadal scale 
predictability. Hoerling et al. (2011) appeal to forced climate change relative to the 1971–2000 period 
together with the statistics of natural variability to infer the potential for the prediction of temperature over 
North America for 2011–2020.  
 
Tziperman et al. (2008) apply LIM-based methods to GFDL model output as do Hawkins and Sutton (2009) 
and Hawkins et al. (2011) to Hadley Centre model output and find predictability up to a decade or more for 
the AMOC and North Atlantic SST. Branstator et al. (2012) use analog and multivariate linear regression 
methods to quantify the predictability of the internally generated component of upper ocean temperature in 
results from six coupled models. Results differ considerably across models but offer some areas of 
commonality. Basin-average estimates indicate predictability for up to a decade in the North Atlantic and 
somewhat less in the North Pacific. Branstator and Teng (2012) assess the predictability of both the 
internally generated and forced component of upper ocean temperature in results from twelve coupled 
models participating in CMIP5. They infer potential predictability from initializing the internally generated 
component for 5 years in the North Pacific and 9 years in the North Atlantic while the forced component 
dominates after 6.5 and 8 years in the two basins. Results vary among models although with some agreement 
for internal component predictability in subpolar gyre regions. 
 
Studies of “potential predictability” take a number of forms but broadly assume that overall variability may 
be separated into a long timescale component of interest and shorter timescale components that are 

unpredictable on these long timescales, written symbolically as . The fraction  

is a measure of potentially predictable variance provided that hypothesis that  is zero may be rejected. 

Small p indicates either a lack of long timescale variability or its smallness as a fraction of the total. 
Predictability is “potential” in the sense that the existence of appreciable long timescale variability is not a 
direct indication that it may be skilfully predicted. There are a number of approaches to estimating potential 
predictability each with its statistical difficulties (e.g., (DelSole and Feng, 2013). At multi-annual timescales 
the potential predictability of the internally generated component of temperature is studied in Boer (2000); 
Collins (2002); Pohlmann et al. (2004); Power and Colman (2006) and, in a multi-model context, in Boer 
(2004) and Boer and Lambert (2008). Power and Colman (2006) report that potential predictability in the 
ocean tends to increase with latitude and depth. Multi-model results for both externally forced and internally 
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generated components of the potential predictability of decadal means of surface air temperature in 
simulations of 21st century climate in CMIP3 model data are analyzed in Boer (2011) and results based on 
CMIP5 model data are shown in Figure 11.2. Potential predictability of five year means for internally 
generated variability is found over extratropical oceans but is generally weak over land while that associated 
with the decadal change in the forced component is found in tropical areas and over some land areas. 
 
Predictability studies of precipitation on long timescales are comparatively few. Jai and DelSole (2012) 
identify “optimally predictable” fractions of internally generated temperature and precipitation variance over 
land on multi-year timescales in the control simulations of 10 models participating in CMIP5 with results 
that vary considerably from model to model. Boer and Lambert (2008) find little potential predictability for 
decadal means of precipitation in the internally generated variability of a collection of CMIP3 model control 
simulations other than over parts of the North Atlantic. This is also the case for the internally generated 
component of CMIP3 precipitation in 21st century climate change simulations in (Boer, 2011) although 
there is evidence of potential predictability for the forced component of precipitation mainly at higher 
latitudes and for longer timescales. 
 
[INSERT FIGURE 11.1 HERE] 
Figure 11.1: The potential predictability of five-year means of temperature (lower panel), the contribution from the 
forced component (middle panel) and from the internally generated component (upper panel). These are multi-model 
results from CMIP5 RCP4.5 scenario simulations from 17 coupled climate models following the methodology of Boer 
(2011). The results apply to the early 21st century. 
 
11.2.1.4 Summary 
 
Predictability studies suggest that initialized climate forecasts should be able to provide more detailed 
information on climate evolution, over a few years to a decade, than is available from uninitialized climate 
simulations alone. Predictability results are, however, based mainly on climate model results and depend on 
the verisimilitude with which the models reproduce climate system behaviour (Chapter 9). There is evidence 
of multi-year predictability for both the internally generated and externally forced components of 
temperature over considerable portions of the globe with the first dominating at shorter and the second at 
longer timescales. Predictability for precipitation is based on fewer studies, is more modest than for 
temperature, and appears to be associated mainly with the forced component at longer timescales. 
Predictability can also vary from location to location. 
 
11.2.2 Climate Prediction on Decadal Timescales 
 
11.2.2.1 Initial Conditions 
 
A dynamical prediction consists of an ensemble of forecasts produced by integrating a climate model 
forward in time from a set of observation-based initial conditions. As the forecast range increases, processes 
in the ocean become increasingly important and the sparseness, non-uniformity and secular change in sub-
surface ocean observations is a challenge to analysis and prediction (Meehl et al., 2009b; Murphy et al., 
2010; Meehl et al., 2013d) and can lead to differences among ocean analyses, i.e. quantified descriptions of 
ocean initial conditions (Stammer, 2006; Keenlyside and Ba, 2010). Approaches to ocean initialization 
include (as listed in Table 11.1): assimilation only of SSTs to initialize the sub-surface ocean indirectly 
(Keenlyside et al., 2008:Dunstone, 2010 #17; Swingedouw et al., 2013); the forcing of the ocean model with 
atmospheric observations (e.g., Du et al. (2012); Matei et al. (2012b); (Yeager et al., 2012) and more 
sophisticated alternatives based on fully coupled data assimilation schemes (e.g., (Zhang et al., 2007a; 
Sugiura et al., 2009). 
 
Dunstone and Smith (2010) and Zhang et al. (2010a) found an expected improvement in skill when sub-
surface information was used as part of the initialization. Assimilation of atmospheric data, on the other 
hand, is expected to have little impact after the first few months Balmaseda and Anderson (2009). The 
initialization of sea ice, snow cover, frozen soil and soil moisture can potentially contribute to seasonal and 
subseasonal skill (e.g., (Koster et al., 2010; Toyoda et al., 2011; Chevallier and Salas-Melia, 2012; Paolino et 
al., 2012), although an assessment of their benefit at longer time scales has not yet been determined. 
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11.2.2.2 Ensemble Generation 
 
An ensemble can be generated in many different ways and a wide range of methods have been explored in 
seasonal prediction (e.g., (Stockdale et al., 1998; Stan and Kirtman, 2008) but not yet fully investigated for 
decadal prediction (Corti et al., 2012). Methods being investigated include adding random perturbations to 
initial conditions, using atmospheric states displaced in time, using parallel assimilation runs (Doblas-Reyes 
et al., 2011; Du et al., 2012) and perturbing ocean initial conditions (Zhang et al., 2007a; Mochizuki et al., 
2010). Perturbations leading to rapidly growing modes, common in weather forecasting have also been 
investigated (Kleeman et al., 2003; Vikhliaev et al., 2007; Hawkins and Sutton, 2009; Hawkins and Sutton, 
2011; Du et al., 2012). The uncertainty associated with the limitations of a model’s representation of the 
climate system may be partially represented by the perturbed physics (Stainforth et al., 2005; Murphy et al., 
2007) or stochastic physics (Berner et al., 2008) and applied to multi-annual and decadal predictions 
(Doblas-Reyes et al., 2009; Smith et al., 2010), although the most common method is the multi-model 
approach. Weisheimer et al. (2011) compare these three approaches in a seasonal prediction context. 
 
The multi-model approach, which is used widely, combines ensembles of predictions from a collection of 
models thereby increasing the sampling of both initial conditions and model properties. Multi-model 
approaches are used across timescales ranging from seasonal-interannual (e.g., DEMETER; Palmer et al. 
(2004), to seasonal-decadal (e.g., Weisheimer et al. (2011); van Oldenborgh et al. (2012), in climate change 
simulation (e.g., IPCC 2007, Chapter 10, Meehl et al. (2007b)) and in the ENSEMBLES and CMIP5-based 
decadal predictions assessed in Section 11.2.3. A problem with the multi-model approach is the strong 
dependence of the current forecast systems that leads to colinearity of the forecast errors Knutti et al. (2013). 
 
11.2.3 Prediction Quality 
 
11.2.3.1 Decadal Prediction Experiments 
 
Decadal predictions for specific variables can be made by exploiting empirical relationships based on past 
observations and expected physical relationships. Predictions of North Pacific Ocean temperatures have been 
achieved using prior wind stress observations Schneider and Miller (2001). Both global and regional 
predictions of surface temperature have been made based on projected changes in external forcing and the 
observed state of the natural variability at the start date (Lean and Rind, 2009; Krueger and von Storch, 
2011; Ho et al., 2012a; Newman, 2013). Some of these forecast systems are also used as benchmarks to 
compare with the dynamical systems under development. Comparisons (Newman (2013)) have shown that 
there is similarity in the temperature skill between a linear inverse method and the CMIP5 hindcasts, 
pointing at a similarity in their sources of skill. In the future, the combination of information from empirical 
and dynamical predictions might be explored to provide a unified and more skilful source of information. 
 
Evidence for skilful interannual to decadal temperatures using dynamical models forced only by previous 
and projected changes in anthropogenic greenhouse gases and aerosols and natural variations in volcanic 
aerosols and solar irradiance is reported by Lee et al. (2006b), Räisänen and Ruokolainen (2006) and 
Laepple et al. (2008). Some attempts to predict the 10-year climate over regions have been done using this 
approach and including assessments of the role of the internal decadal variability (Hoerling et al., 2011). To 
be clear, in the context of this report these studies are viewed as projections since no attempt is made to use 
observational estimates for the initial conditions. Essentially, an uninitialized prediction is synonymous with 
a projection. These projections or uninitialized predictions are referred to synonymously in the literature as 
‘NoInit,’ or ‘NoAssim’ referring to the fact that no assimilated observations are used for the specification of 
the initial conditions. 
 
Additional skill can be realized by initializing the models with observations in order to predict the evolution 
of the internally generated component and to correct the model’s response to previously imposed forcing 
(Smith et al., 2010; Fyfe et al., 2011; Kharin et al., 2012; Smith et al., 2012). Again, to be clear, the 
assessment provided here distinguishes studies attempting to initialize the models with observations as a 
prediction. This is in contrast to projection studies noted in the previous paragraph where no attempt at 
initialization is made. 
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The ENSEMBLES project (van Oldenborgh et al., 2012), for example, has conducted a multi-model decadal 
retrospective prediction study, and the Coupled Model Intercomparison Project phase 5 (CMIP5) proposed a 
coordinated experiment that focuses on decadal, or near-term, climate prediction (Meehl et al., 2009b; 
Taylor et al., 2012). Prior to these initiatives, a few pioneering attempts at initialized decadal prediction were 
made (Pierce et al., 2004; Smith et al., 2007; Troccoli and Palmer, 2007; Keenlyside et al., 2008; Pohlmann 
et al., 2009; Mochizuki et al., 2010). Results from the CMIP5 coordinated experiment (Taylor et al., 2012) 
are the basis for the assessment reported here. 
 
Since the practice of decadal prediction is in its infancy, details of how to initialize the models was left to the 
discretion of the modelling groups and are described in Meehl et al. (2013d) and Table 11.1. In CMIP5 
experiments, volcanic aerosol and solar cycle variability are prescribed along the integration using 
observation-based values up to 2005, and assuming a climatological 11-year solar cycle and a background 
volcanic aerosol load in the future. These forcings are shared with CMIP5 historical runs (i.e., unintialized 
projections) started from pre-industrial control simulations enabling an assessment of the impact of 
initialization. The specification of the volcanic aerosol load and the solar irradiance in the hindcasts gives an 
optimistic estimate of the forecast quality with respect to an operational prediction system where no future 
information can be used. Table 11.1 summarizes forecast systems contributing to and the initialization 
methods used in the CMIP5 near-term experiment.  
 
The coordinated nature of ENSEMBLES and CMIP5 experiments offers a good opportunity to study multi-
model ensembles (Garcia-Serrano and Doblas-Reyes, 2012; van Oldenborgh et al., 2012) as a means of 
sampling model uncertainty while some modelling groups have also investigated this using perturbed 
parameter approaches (Smith et al., 2010). The relative merit of the different approaches for decadal 
predictions has yet to be assessed. 
 
[INSERT TABLE 11.1 HERE] 
Table 11.1: Initialization methods used in models that entered CMIP5 near-term experiments. 
 
When initialized with states close to the observations, models ‘drift’ towards their imperfect climatology (an 
estimate of the mean climate), leading to biases in the simulations that depend of the forecast time. The time 
scale of the drift in the atmosphere and upper ocean is, most cases, a few years (Hazeleger et al., 2013a). 
Biases can be largely removed using empirical techniques a posteriori (Garcia-Serrano and Doblas-Reyes, 
2012; Kharin et al., 2012). The bias correction or adjustment linearly corrects for model drift (e.g., 
(Stockdale, 1997; Garcia-Serrano et al., 2012; Gangstø et al., 2013). The approach assumes that the model 
bias is stable over the prediction period (from 1960 onward in the CMIP5 experiment). This might not be the 
case if, for instance, the predicted temperature trend differs from the observed trend (Fyfe et al., 2011; 
Kharin et al., 2012). Figure 11.2 is an illustration of the time scale of the global SST drift, while at the same 
time showing the systematic error of several of the forecast systems contributing to CMIP5. It is important to 
note that the systematic errors illustrated here are common to both decadal prediction systems and climate-
change projections. The biases adjustment is another important source of uncertainty in climate predictions 
(e.g., (Ho et al., 2012b). There are non-linear relationships between the mean state and the anomalies, that 
cannot be accounted for in linear bias adjustment techniques. There are also difficulties in estimating the 
drift in the presence of volcanic eruptions. 
 
[INSERT FIGURE 11.2 HERE] 
Figure 11.2: Time series of global-mean sea surface temperature from the a) direct model output and b) anomalies of 
the CMIP5 multi-model initialized hindcasts. Results for each forecast system are plotted with a different colour, with 
each line representing an individual member of the ensemble. Results for the start dates 1961, 1971, 1981, 1991 and 
2001 are shown, while the model and observed climatologies to obtain the anomalies in panel b have been estimated 
using data from start dates every five years. The reference data (ERSST) is drawn in black. All time series have been 
smoothed out with a 24-month centred moving average that filters out the seasonal cycle and removes data for the first 
and last years of each time series. 
 
It has been recognized that including as many initial states as possible in computing the drift and adjusting 
the bias is more desirable than a greater number of ensemble members per initial state (Meehl et al., 2013d), 
although increasing both is desirable to obtain robust forecast quality estimates. A procedure for bias 
adjustment following the technique outlined above has been recommended for CMIP5 (Office), 2011). A 
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suitable adjustment depends also on there being a sufficient number of hindcasts for statistical robustness 
(Garcia-Serrano et al., 2012; Kharin et al., 2012). 
 
To reduce the impact of the drift many of the early attempts at decadal prediction (Smith et al., 2007; 
Keenlyside et al., 2008; Pohlmann et al., 2009; Mochizuki et al., 2010) use an approach called anomaly 
initialization (Schneider et al., 1999; Pierce et al., 2004; Smith et al., 2007). The anomaly initialization 
approach attempts to circumvent model drift and the need for a time-varying bias correction. The models are 
initialized by adding observed anomalies to an estimate of the model mean climate. The mean model climate 
is subsequently subtracted from the predictions to obtain forecast anomalies. Sampling error in the 
estimation of the mean climatology affects the success of this approach, which is also the case for the full-
field initialization, although it is affected to a smaller degree by the drift (Hazeleger et al., 2013a). The 
relative merits of anomaly versus full initialization are being quantified (Hazeleger et al., 2013a; Magnusson 
et al., 2013; Smith et al., 2013a), although no initialization method was found to be definitely better in terms 
of forecast quality. Another less widely explored alternative is the dynamic bias correction in which multi-
year monthly mean analysis increments are added during the integration of the ocean model (Wang et al., 
2013). Figure 11.2 includes predictions performed with both full and anomaly initialization systems. 
 
11.2.3.2 Forecast Quality Assessment 
 
The quality of a forecast system is assessed by estimating, among others, the accuracy, skill and reliability of 
a set of hindcasts (Jolliffe and Stephenson, 2011). These three terms - accuracy, skill and reliability – are 
used here in a strict technical sense. A suite of measures needs to be considered, particularly when a forecast 
system are compared. The accuracy of a forecast system refers to the average distance/error between 
forecasts and observations. The skill score is a relative measure of the quality of the forecasting system 
compared to some benchmark or reference forecast (e.g., climatology or persistence). The reliability, which 
is a property of the specific forecast system, measures the trustworthiness of the predictions. Reliability 
measures how well the predicted probability distribution matches the observed relative frequency of the 
forecast event. In other words, a probabilistic prediction is considered reliable if a user can rely on it to make 
a decision, even if the prediction is not skilful with respect to a naïve prediction. Accuracy and reliability are 
aspects of the forecast quality that can be improved by improving the individual forecast systems or by 
combining several of them into a multi-model prediction. The reliability can be improved by a posteriori 
corrections to model spread. Forecast quality can also be improved by unequal weighting (Weigel et al., 
2010; DelSole et al., 2013), although this option has not been explored in decadal prediction to this date 
because a long training sample is required to obtain robust weights.  
 
The assessment of forecast quality depends the quantities of greatest interest to those who use the 
information. WMO’s Standard Verification System (SVS) for Long Range Forecasts (LRF) (World 
Meteorological Organization (WMO), 2002) outlines specifications for long-range (sub-seasonal to 
seasonal) forecast quality assessment. These measures are also described in Jolliffe and Stephenson (2011) 
and Wilks (2006). A recommendation for a deterministic metric for decadal climate predictions is the mean 
square skill score (MSSS), and for a probabilistic metric, the continuous ranked probability skill score 
(CRPSS) as described in (Goddard et al., 2013) and Meehl et al. (2013d). For dynamical ensemble systems, 
a useful measure of the characteristics of an ensemble forecast system is spread. The relative spread can be 
described in terms of the ratio between the mean spread around the ensemble mean and the root mean square 
error (RMSE) of the ensemble-mean prediction, or spread-to-RMSE ratio. A ratio of one is considered a 
desirable feature for a Gaussian-distributed variable of a well-calibrated (i.e. reliable) prediction system 
(Palmer et al., 2006). The importance of using statistical inference in forecast quality assessments has been 
recently emphasized (Garcia-Serrano and Doblas-Reyes, 2012; Goddard et al., 2013). This is even more 
important when there are only small samples available (Kumar, 2009) and a small number of degrees of 
freedom (Gangstø et al., 2013). Confidence intervals for the scores are typically computed using either 
parametric or bootstrap methods (Lanzante, 2005; Jolliffe, 2007; Hanlon et al., 2013).  
 
The skill of seasonal predictions can vary from a generation of forecast systems to the next one (Balmaseda 
et al., 1995; Power et al., 1999), highlighting the possibility that the skill of decadal predictions might also 
vary from one period to another. Certain initial conditions might precede more predictable near-term states 
than other initial conditions, and this has the potential to be reflected in predictive skill assessments. 
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However, the short length of the period available to initialize and verify the predictions makes the analysis of 
the interannual variations of the skill very difficult. 
 
11.2.3.3 Pre-CMIP5 Decadal Prediction Experiments 
 
Early decadal prediction studies found little additional predictability from initialization, over that due to 
changes in radiative forcing, on global (Pierce et al., 2004) and regional scales (Troccoli and Palmer, 2007). 
However, neither of these studies considered more than two start dates. More comprehensive tests, which 
considered at least nine different start dates indicated temperature skill (Smith et al., 2007; Keenlyside et al., 
2008; Pohlmann et al., 2009; Sugiura et al., 2009; Mochizuki et al., 2010; Smith et al., 2010; Doblas-Reyes 
et al., 2011; Garcia-Serrano and Doblas-Reyes, 2012; Garcia-Serrano et al., 2012; Kroger et al., 2012; Matei 
et al., 2012b; van Oldenborgh et al., 2012; Wu and Zhou, 2012; MacLeod et al., 2013). Moreover, this skill 
was enhanced by the initialization (local increase in correlation of 0.1 to 0.3, depending on the system) 
mostly over the ocean, in particular over the North Atlantic and subtropical Pacific oceans. Regions with 
skill improvements for precipitation are small and rarely statistically significant (Goddard et al., 2013).  
 
11.2.3.4 CMIP5 Decadal Prediction Experiments 
 
Indices of global-mean temperature, the Atlantic multi-decadal variability (AMV; (Trenberth and Shea, 
2006)) and the interdecadal Pacific oscillation (IPO; (Power et al., 1999)) or Pacific Decadal Oscillation 
(PDO) are used as benchmarks to assess the ability of decadal forecast systems to predict multi-annual 
averages of climate variability (Kim et al., 2012; van Oldenborgh et al., 2012; Doblas-Reyes et al., 2013; 
Goddard et al., 2013); see also Figure 11.3). Initialized predictions of annual-mean global-mean temperature 
for the following year are now being performed in almost-real time (Folland et al., 2013).  
 
Non-initialized predictions (or projections) of the global-mean temperature are statistically significantly 
skilful for most of the forecast ranges considered (high confidence), due to the almost monotonic increase in 
temperature, pointing to the importance of the time-varying radiative forcing (Murphy et al., 2010; Kim et 
al., 2012). This leads to a high (above 0.9) correlation of the ensemble-mean prediction that varies very as a 
function of forecast lead-time. This holds whether the changes in the external forcing (i.e., changes in natural 
and/or anthropogenic atmospheric composition) are specified (i.e., CMIP5) or are projected (ENSEMBLES). 
The skill of the multi-annual global-mean surface temperature improves with the initialization, although this 
is mainly evidenced when the accuracy is measured in terms of the RMSE (Doblas-Reyes et al., 2013). An 
improved prediction of the global-mean surface temperature is evidenced by the closer fit of the initialized 
predictions during the 21st Century (Figure 11.3; (Meehl and Teng, 2012; Doblas-Reyes et al., 2013; 
Guemas et al., 2013); Box 9.2). The impact of the initialization is seen as a better representation of the phase 
of the internal variability, in particular in increasing the upper ocean heat content (Meehl et al., 2011) and in 
terms of a correction of the model’s forced response. 
 
The AMV (Chapter 14) has important impacts on temperature and precipitation over land (Li and Bates, 
2007; Li et al., 2008; Semenov et al., 2010). The AMV index shows a large fraction of its variability on 
decadal time scales and has multi-year predictability (Murphy et al., 2010; Garcia-Serrano and Doblas-
Reyes, 2012). The AMV has been connected to multi-decadal variability of Atlantic tropical cyclones 
(Goldenberg et al., 2001; Zhang and Delworth, 2006; Smith et al., 2010; Dunstone et al., 2011). Figure 11.3 
shows that the CMIP5 multi-model ensemble mean has skill on multi-annual time scales, the skill being 
generally larger than for the single-model forecast systems (Garcia-Serrano and Doblas-Reyes, 2012; Kim et 
al., 2012). The skill of the AMV index improves with the initialization (high confidence) for the early 
forecast ranges. In particular, the root mean square error is substantially reduced (indicating improved skill) 
with the initialization for the AMV. The positive correlation of the non-initialized AMV predictions is 
consistent with the view that part of the recent variability is due to the external forcings (Evan et al., 2009; 
Ottera et al., 2010; Chang et al., 2011; Booth et al., 2012; Garcia-Serrano et al., 2012; Terray, 2012; Villarini 
and Vecchi, 2012; Doblas-Reyes et al., 2013). 
 
Pacific decadal variability is associated with potentially important climate impacts, including rainfall over 
America, Asia, Africa and Australia (Power et al., 1999; Deser et al., 2004; Seager et al., 2008; Zhu et al., 
2011; Li et al., 2012). The combination of Pacific and Atlantic variability and climate change is an important 
driver of multidecadal US drought (McCabe et al., 2004; Burgman et al., 2010) including key events like the 
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American dustbowl of the 1930s (Schubert et al., 2004). van Oldenborgh et al. (2012) reported weak skill of 
the IPO in the ENSEMBLES multi-model, although Doblas-Reyes et al. (2013) show that the ensemble-
mean skill of the ENSEMBLES multi-model IPO is not statistically significant at the 95% level and shows 
no clear impact of the initialization, in agreement with the predictability study of (Meehl et al., 2010). 
However, case studies suggest that there might be some initial states that can produce skill in predicting IPO-
related decadal variability for some time periods (e.g., (Chikamoto et al., 2012b; Meehl and Arblaster, 2012; 
Meehl et al., 2013a). 
 
The higher AMV and global-mean temperature skill of the CMIP5 predictions with respect to the 
ENSEMBLES hindcasts (van Oldenborgh et al., 2012; Goddard et al., 2013) might be partly due to the 
CMIP5 multi-model using specified instead of projected aerosol loading (especially the volcanic aerosol) 
and solar irradiance variations during the simulations. As these forcings can not be specified in a real 
forecast setting, ENSEMBLES offers an estimate of the skill closer to what could be expected from a real-
time forecast system such as the one described in (Smith et al., 2013a), although the use of correct forcings 
allows a more powerful test of the effect of initialization on the ability of models to reproduce past 
observations. 
 
[INSERT FIGURE 11.3 HERE] 
Figure 11.3: Decadal prediction forecast quality of several climate indices. Top row: Time series of the 2–5 year 
average ensemble-mean initialized hindcast anomalies and the corresponding non-initialized experiments for three 
climate indices: global-mean temperature (MGST, left) and the Atlantic multidecadal variability (AMV, right). The 
observational time series, GISS global-mean temperature and ERSST for the AMV, are represented with dark grey 
(positive anomalies) and light grey (negative anomalies) vertical bars, where a four-year running mean has been applied 
for consistency with the time averaging of the predictions. Predicted time series are shown for the CMIP5 Init (solid) 
and NoInit (dotted) simulations with hindcasts started every five years over the period 1960–2005. The lower and upper 
quartile of the multi-model ensemble are plotted using thin lines. The AMV index was computed as the SST anomalies 
averaged over the region Equator –60ºN and 80ºW–0ºW minus the SST anomalies averaged over 60ºS–60ºN. Note that 
the vertical axes are different for each time series. Middle row: Correlation of the ensemble-mean prediction with the 
observational reference along the forecast time for four-year averages of the three sets of CMIP5 hindcasts for Init 
(solid) and NoInit (dashed). The one-sided 95% confidence level with a t distribution is represented in grey. The 
effective sample size has been computed taking into account the autocorrelation of the observational time series. A two-
sided t test (where the effective sample size has been computed taking into account the autocorrelation of the 
observational time series) has been used to test the differences between the correlation of the initialized and non-
initialized experiments, but no differences where found statistically significant with a confidence equal or higher than 
90%. Bottom row: Root mean square error of the ensemble-mean prediction along the forecast time for four-year 
averages of the CMIP5 hindcasts for Init (solid) and NoInit (dashed). A two-sided F test (where the effective sample 
size has been computed taking into account the autocorrelation of the observational time series) has been used to test 
the ratio between the RMSE of the Init and NoInit, and those forecast times with differences statistically significant 
with a confidence equal or higher than 90% are indicated with an open square. Adapted from (Doblas-Reyes et al., 
2013). 
 
Near-term prediction systems have significant skill for temperature over large regions (Figure 11.4), 
especially over the oceans (Smith et al., 2010; Doblas-Reyes et al., 2011; Kim et al., 2012; Matei et al., 
2012b; van Oldenborgh et al., 2012; Hanlon et al., 2013). It has been shown that a large part of the skill 
corresponds to the correct representation of the long-term trend (high confidence) as the skill decreases 
substantially after an estimate of the long-term trend is removed from both the predictions and the 
observations (e.g., (Corti et al., 2012; van Oldenborgh et al., 2012; MacLeod et al., 2013). Robust skill 
increase due to the initialization (Figure 11.4) is limited to areas of the North Atlantic, the Indian Ocean and 
the southeast Pacific (high confidence) (Doblas-Reyes et al., 2013), in agreement with previous results 
(Pohlmann et al., 2009; Smith et al., 2010; Mochizuki et al., 2012) and predictability estimates (Branstator 
and Teng, 2012). Similar results have been found in several individual forecast systems (e.g., (Muller et al., 
2012; Bellucci et al., 2013). However, the impact of the initialization on the skill in those regions, though 
robust (as shown by the agreement between the different CMIP5 systems), is small and not statistically 
significant with 90% confidence. 
 
The improvement in retrospective North Atlantic variability predictions from initialization (Smith et al., 
2010; Dunstone et al., 2011; Garcia-Serrano et al., 2012; Hazeleger et al., 2013b) suggests that internal 
variability was important to North Atlantic variability during the past few decades. However, the 
interpretation of the results is complicated by the fact that the impact on skill varies slightly with the forecast 
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quality measure used (Figure 11.3; (Doblas-Reyes et al., 2013). This has been attributed to, among other 
things, the different impact of the predicted local trends on the scores used (Goddard et al., 2013). The sub-
polar Atlantic, which was shown to be skilful in Figure 11.4, improves the skill with the initialization more 
than the sub-tropical Atlantic (Garcia-Serrano et al., 2012; Robson et al., 2012; Hazeleger et al., 2013b). 
This is relevant because the sub-polar branch of the AMV is a source of skill for multi-year North Atlantic 
tropical storm frequency predictions (Smith et al., 2010). However, another study argued that the nominal 
improvement in multi-year forecasts of North Atlantic hurricane frequency was mainly due to persistence 
(Vecchi et al., 2012). 
 
Sugiura et al. (2009) report using a single forecast system skill in hindcasts of the Pacific Decadal 
Oscillation (PDO), which is ascribed to the interplay between Rossby waves and a clockwise propagation of 
ocean heat content anomalies along the Kuroshio-Oyashio extension and subtropical subduction pathway. 
However, as Figure 11.4 shows, the Pacific Ocean has the lowest temperature skill overall, with no 
consistent impact of the initialization. The central North Pacific has zero or negative skill, which may be due 
to the relatively large amplitude of the interannual variability when compared to the long-term trend; the 
overall failure to predict the largest warming events (Guémas et al., 2012) beyond a few months; and 
differences (compared to AMV) in how surface temperature and upper ocean heat content interact for the 
PDO (Mochizuki et al., 2010; Chikamoto et al., 2012a; Mochizuki et al., 2012). There is a robust loss of skill 
with the initialization in the CMIP5 predictions over the equatorial Pacific (Doblas-Reyes et al., 2013) that 
has not been adequately explained.  
 
[INSERT FIGURE 11.4 HERE] 
Figure 11.4: a) Root mean square skill score of the near surface air temperature forecast quality for the forecast time 2-
5 years from the multi-model ensemble mean of the CMIP5 Init experiment with five-year interval between start dates 
over the period 1960–2005. A combination of temperatures from GHCN/CAMS air temperature over land, ERSST and 
GISTEMP 1200 over the polar areas is used as a reference. Black dots correspond to the points where the skill score is 
statistically significant with 95% confidence using a one-sided F-test taking into account the autocorrelation of the 
observation minus prediction time series. b) Ratio between the root mean square error of the ensemble mean of Init and 
NoInit. Dots are used for the points where the ratio is significantly above or below one with 90% confidence using a 
two-sided F-test taking into account the autocorrelation of the observation minus prediction time series. Contours are 
used for areas where the ratio of at least 75% of the single forecast systems is either above or below one agreeing with 
the value of the ratio in the multi-model ensemble. Poorly observationally sampled areas are masked in grey. The model 
original data have been bilinearly interpolated to the observational grid. The ensemble mean of each forecast system has 
been estimated before computing the multi-model ensemble mean. Adapted from (Doblas-Reyes et al., 2013). 
 
The AMV is thought to be related to the AMOC (Knight et al., 2005). An assessment of the impact of 
observing systems on AMOC predictability indicates that the recent dense observations of oceanic 
temperature and salinity are crucial to constraining the AMOC in one model Zhang et al. (2007a), while the 
observing system representative of the pre-2000s was not as effective, indicating that inadequate 
observations in the past might also have limited the impact of initialization on the predictions. This has been 
confirmed by Pohlmann et al. (2013) using decadal predictions, where they also find a positive impact of the 
initialization that agrees with (Hazeleger et al., 2013b). Assessments of the skill of prediction systems to 
hindcast past variability in the AMOC have been attempted (Pohlmann et al., 2013; Swingedouw et al., 
2013) although direct measures of the AMOC are far too short to underpin a reliable estimate of skill, and 
longer histories are poorly known (Matei et al., 2012a; Vecchi et al., 2012). There is very low confidence in 
current estimates of the skill of the AMOC hindcasts. Sustained ocean observations, such as Argo and 
RAPID-MOCHA, will be needed to build a capability to reliably predict the AMOC (Srokosz et al., 2012) 
 
Climate prediction is, by nature, probabilistic. Probabilistic predictions are expected to be skillful, but also 
reliable. Decadal predictions should be evaluated on the basis of whether they give an accurate estimation of 
the relative frequency of the predicted outcome. This question can be addressed using, among other tools, 
attributes diagrams (Mason, 2004). They measure how closely the forecast probabilities of an event 
correspond to the mean probability of observing the event. They are based on a discrete binning of many 
forecast probabilities taken over a given geographical region. Figure 11.5 illustrates the CMIP5 multi-model 
Init and NoInit attributes diagrams for predictions of both the global and North Atlantic SSTs to be below 
the lower tercile (where the tercile threshold has been estimated separately for the predictions and the 
observations). The diagrams are constructed using predictions for each grid point over the corresponding 
area. For perfect reliability the forecast probability and the frequency of occurrence should be equal, and the 
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plotted points should lie on the diagonal (solid black line in the figure). When the line joining the bullets (the 
reliability curve) has positive slope indicates that as the forecast probability of the event increases, so does 
the chance of observing the event. The predictions therefore can be considered as moderately reliable. 
However, if the slope of the curve is less than the diagonal, then the forecast system is overconfident. If the 
reliability curve is mainly horizontal, then the frequency of occurrence of the event does not depend on the 
forecast probabilities and the predictions contain no more information than a random guess. In this situation 
a user might make some very poor decision based on such uncalibrated probabilities. An ideal forecast 
should have a good resolution whilst retaining reliability, i.e. probability forecasts should be both sharp and 
reliable. 
 
In agreement with Corti et al. (2012), CMIP5 multi-model surface temperature predictions are more reliable 
for the North Atlantic than when considered over the global oceans, and have a tendency to be overconfident 
particularly for the global oceans (medium confidence). This means that the multi-model ensemble spread 
should not be considered as a robust measure of the actual uncertainty, at least for multi-annual averages. 
The attributes diagrams already take into account the systematic error in the simulated variability by 
estimating separately the event thresholds for the predictions and the observational reference. For the North 
Atlantic, the initialization improves the reliability of the predictions, which translates in an increase of the 
Brier skill score, the probabilistic skill measure with respect to a naïve climatological prediction (which is 
reliable, but not skilful) used to aggregate the information in the attributes diagram. However, the 
uncertainty associated with these estimates is not negligible. This is mainly due to the small sample of start 
dates, which has the consequence that the number of predictions with a given probability is small to give a 
robust estimate of the observed relative frequency (Brocker and Smith, 2007). In addition to this, there are 
biases in the reliability diagram itself (Ferro and Fricker, 2012). These results suggest that the multi-model 
ensemble should be used with care when estimating probability forecasts or the uncertainty of the mean 
predictions. Given that the models used for the dynamical predictions are the same as those used for the 
projections, this verification provides useful information for the assessment of the projections (cf. Box 11.2). 
 
[INSERT FIGURE 11.5 HERE] 
Figure 11.5: Attributes diagram for the CMIP5 multi-model decadal initialized (panels a and c) and non-initialized 
(panels b and d) hindcasts for the event ‘surface air temperature anomalies below the lower tercile over a) and b) the 
global oceans (60ºN–60ºS) and c) and d) the North Atlantic (87.5ºN–30ºN, 80ºW–10ºW) for the forecast time 2–5 
years. The red bullets in the figure correspond to the number of probability bins (10 in this case) used to estimate 
forecast probabilities. The size of the bullets represents the number of forecasts in a specific probability category and is 
a measure of the sharpness (or variance of the forecast probabilities) of the predictions. The blue horizontal and vertical 
lines indicate the climatological frequency of the event in the observations and the mean forecast probability, 
respectively. Grey vertical bars indicate the uncertainty in the observed frequency for each probability category 
estimated at 95% level of confidence with a bootstrap resampling procedure based on 1000 samples. The longer the 
bars, the more the vertical position of the bullets may change as new hindcasts become available. The black dashed line 
separates skilful from unskilled regions in the diagram in the Brier skill score sense. The Brier skill score with respect 
to the climatological forecast is drawn in the top left corner of each panel. Adapted from (Corti et al., 2012). 
 
The skill in hindcasting land precipitation (Figure 11.6) is much lower than the skill in hindcasting 
temperature over land. This is consistent with predictability studies discussed previously (e.g., Box 11.1) 
(high confidence). Several regions, especially in the Northern Hemisphere and West Africa (Gaetani and 
Mohino, 2013), have skill but these regions are not statistically significant with a 95% confidence level. The 
positive precipitation skill can be attributed mostly to the variable radiative forcing (high confidence) as the 
initialization improves the skill very little (Goddard et al., 2013). The areas with positive skill agree with 
those where the precipitation trends of multiannual averages are the largest (Doblas-Reyes et al., 2013). The 
skill in areas like West Africa might be associated with the positive AMV skill, the AMV being mechanism 
driving interannual variability in precipitation over this region (van Oldenborgh et al., 2012). 
 
[INSERT FIGURE 11.6 HERE] 
Figure 11.6: a) Root mean square skill score of the precipitation for the forecast time 2–5 years from the multi-model 
ensemble mean of the CMIP5 Init experiment with five-year interval between start dates over the period 1960–2005. 
GPCC precipitation is used as a reference. Black dots correspond to the points where the skill score is statistically 
significant with 95% confidence using a one-sided F-test taking into account the autocorrelation of the observation 
minus prediction time series. b) Ratio between the root mean square error of the ensemble mean of Init and NoInit. Dots 
are used for the points where the ratio is significantly above or below one with 90% confidence using a two-sided F-test 
taking into account the autocorrelation of the observation minus prediction time series. Contours are used for areas 
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where the ratio of at least 75% of the single forecast systems is either above or below one agreeing with the value of the 
ratio in the multi-model ensemble. The model original data have been bilinearly interpolated to the observational grid. 
The ensemble mean of each forecast system has been estimated before computing the multi-model ensemble mean. 
Adapted from (Doblas-Reyes et al., 2013). 
 
The small amount of statistically significant differences found between the initialized and non-initialized 
experiments does not necessarily mean that the impact of the initialization does not have a physical basis. A 
comparison of the global-mean temperature and AMV forecast quality using one- and five-year intervals 
between start dates (Garcia-Serrano et al., 2012) suggests that, although a five-year interval sampling allows 
an estimate of the level of skill, local maxima as a function of forecast time might well be due to poor 
sampling of the start dates (Garcia-Serrano and Doblas-Reyes, 2012; Kharin et al., 2012; Doblas-Reyes et 
al., 2013; Goddard et al., 2013). Several signals, such as the skill improvement for temperature over the 
North Atlantic, are robust in the sense that it is found in more than 75% of forecast system. However, it is 
difficult to obtain statistical significance with these limited samples. The low start date sampling frequency 
is one of the limitations of the core CMIP5 near-term prediction experiment, the other one being the short 
length of the period of study, limited by the availability of observational data. Results estimated with yearly 
start dates are more robust than with a five-year start date frequency. However, even with one-year start date 
frequency, the impact of the initialization is similar. The spatial distribution of the skill does not change 
substantially with the different start date frequency. The skill and the initialization impact are both slightly 
reduced in the results with yearly start dates, but at the same time the spatial variability is substantially 
reduced. Apart from the low sampling of the start dates, the length of the forecasting period is limited to the 
period over which reasonably accurate estimates of the ocean initial state can be made, which starts around 
1960. This fact also limits the sample size to estimate the forecast quality. 
 
The CMIP5 multi-model overestimates the spread of the multi-annual average temperature (Doblas-Reyes et 
al., 2013). Figure 11.7 shows the ratio of the spread around the ensemble-mean prediction and the root mean 
square error of the ensemble-mean prediction of Init and NoInit, which in a well-calibrated system is 
expected to be close to 1. However, the ratio is overestimated over the North Atlantic, the Indian Ocean and 
the Arctic, and underestimated over the North Pacific and most continental areas, suggesting that the CMIP5 
systems do not discriminate between the regions where the spread should be reduced according to the RMSE 
level in the area. These results are found for, both the Init and NoInit ensembles and agree with the 
overconfidence of the probability forecasts shown in Figure 11.6 (Corti et al., 2012). The spread 
overestimation also agrees with the results found for the indices illustrate in Figure 11.3 (Doblas-Reyes et 
al., 2013). The spread overestimation points to the need of a careful interpretation of current ensemble and 
probabilistic climate information for climate adaptation and services. 
 
[INSERT FIGURE 11.7 HERE] 
Figure 11.7: Ratio between the spread around the ensemble mean and the root mean square error of the ensemble-mean 
prediction of Init and NoInit for the forecast time 2–5 years with five-year interval between start dates over the period 
1960–2005. A combination of temperatures from GHCN/CAMS air temperature over land, ERSST v3b over sea and 
GISTEMP 1200 over the polar areas is used as a reference to compute the RMSE. Adapted from (Doblas-Reyes et al., 
2013). 
 
The skill of extreme daily temperature and precipitation in multi-annual time scales has also been assessed (Eade et al., 
2012; Hanlon et al., 2013). There is little improvement in skill with the initialization beyond the first year suggesting 
that skill then arises largely from the varying external forcing. The skill for extremes is generally similar to, but slightly 
lower than, that for the mean. 
 
Responding to the gains in decadal skill in certain regions due to the initialization, a coordinated quasi-
operational decadal prediction initiative has been organized (Smith et al., 2013b). The forecast systems 
participating in the initiative are based on those of CMIP5 and have been evaluated for forecast quality. 
Statistical predictions are also included in the initiative. The most recent forecast shows (compared to the 
projections) substantial warming of the north Atlantic sub-polar gyre, cooling of the north Pacific throughout 
the next decade and cooling over most land and ocean regions and in the global average out to several years 
ahead. However, in the absence of explosive or frequent volcanic eruptions, global surface temperature is 
predicted to continue to rise and to a certain degree recover from the reduced rate of warming (see Box 9.4). 
 



Final Draft (7 June 2013) Chapter 11 IPCC WGI Fifth Assessment Report 

Do Not Cite, Quote or Distribute 11-20 Total pages: 123 

11.2.3.5 Realizing Potential 
 
Although idealized model experiments show considerable promise for predicting internal variability, 
realizing this potential is a challenging task. There are 3 main hurdles: (1) the limited availability of data to 
initialize and verify predictions, (2) limited progress in initialization techniques for decadal predictions and 
(3) dynamical model shortcomings that require to validate how the simulated variance compares with the 
observed variance. 
 
It is expected that the availability of temperature and salinity data in the top 2 km of the ocean through the 
enhanced global deployment of Argo floats will give a step change in our ability to initialize and predict 
ocean heat and density anomalies (Zhang et al., 2007a; Dunstone and Smith, 2010). Another important 
advancement is the availability of altimetry data, made especially useful after the launching of 
TOPEX/Poseidon in 1992. Argo and altimeter data only became available in 2000 and 1992 respectively, so 
an accurate estimate of their impact on real forecasts has to wait (Dunstone and Smith, 2010). In all cases, 
both the length of the observational datasets and the reduced coverage of the data available, especially before 
2000 are serious limitations to obtain robust estimates of forecast quality. 
 
Improved initialization of other aspects such as sea ice, snow cover, frozen soil and soil moisture, may also 
have potential to contribute to predictive skill beyond the seasonal timescale. This could be investigated, for 
example by using measurements of soil moisture from the Soil Moisture and Ocean Salinity (SMOS) 
satellite launched in 2009, or by initializing sea ice thickness with observations from the CryoSat-2 satellite 
launched in 2010. Along the same line, understanding the links between the initialization and the correct 
prediction of both the internal and external variability should help improving forecast quality (Solomon et al., 
2011). 
 
Many of the current decadal prediction systems use relatively simple initialization schemes and do not adopt 
fully coupled initialization/ensemble generation schemes. Assimilation schemes offer opportunities for fully 
coupled initialization including assimilation of variables such as sea ice, snow cover and soil moisture, 
although they present technically and scientifically challenging problems. This approach has been tested in 
schemes like 4DVAR (Sugiura et al., 2008) and the ensemble Kalman filter (Keppenne et al., 2005; Zhang et 
al., 2007a). 
 
Bias correction is used to reduce the effects of model drift, but the non-linearity in the climate system (e.g., 
Power (1995) might limit the effectiveness of bias correction and thereby reduce the forecast quality. 
Understanding and reducing both drift and systematic errors is important (Palmer and Weisheimer, 2011), as 
it is also for seasonal-to-interannual climate prediction and for climate change projections. While improving 
models is the highest priority, efforts to quantify the degree of interference between model bias and 
predictive signals should not be overlooked. 
 
11.3 Near-Term Projections 
 
11.3.1 Introduction 
 
In this section the outlook for global and regional climate up to mid-century is assessed, based on climate 
model projections. In contrast to the predictions discussed in 11.2, these projections are not initialized using 
observations; instead, they are initialized from historical simulations of the evolution of climate from pre-
industrial conditions up to the present. The historical simulations are forced by estimates of past 
anthropogenic and natural climate forcing agents, and the projections are obtained by forcing the models 
with scenarios for future climate forcing agents. Major use is made of the CMIP5 model experiments forced 
by the RCP scenarios discussed in Chapters 1 and 8. Projections of climate change in this and subsequent 
chapters are expressed relative to the reference period: 1986–2005. In this chapter most emphasis is given to 
the period 2016–2035, but some information on changes projected before and after this period (up to mid-
century) is also provided. Longer-term projections are assessed in Chapters 12 and 13. 
 
Key assessment questions addressed in this section are: what is the externally forced signal of near-term 
climate change, and how large is it compared to natural internal variability? From the point of view of 
climate impacts, the absolute magnitude of climate change may in some instances be less important than the 
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magnitude relative to the local level of natural internal variability. Because many systems are naturally 
adapted to a background level of variability, it may be changes that move outside of this range that are most 
likely to trigger impacts that are unprecedented in the recent past (e.g., Lobell and Burke (2008) for crops).  
 
An important conclusion of the AR4 (Chapter 10, Section 10.3.1) was that near-term climate projections are 
not very sensitive to plausible alternative non-mitigation scenarios for greenhouse gas concentrations 
(specifically the SRES scenarios; comparison with RCP scenarios is discussed in Chapter 1), that is, in the 
near term, different scenarios give rise to similar magnitudes and patterns of climate change. (Note, 
however, that some impacts may be more sensitive.) For this reason, most of the projections presented in this 
chapter are based on one specific RCP scenario, RCP4.5. RCP4.5 was chosen because of its intermediate 
greenhouse gas forcing. However, there is greater sensitivity to other forcing agents, in particular 
anthropogenic aerosols (e.g., (Chalmers et al., 2012). Consequently, a further question addressed in this 
section (especially in Section 11.3.6.1) is: to what extent are near-term climate projections sensitive to 
alternative scenarios for anthropogenic forcing? Note finally that additional information on near-term 
projections is provided in Annex I. 
 
11.3.1.1 Uncertainty in Near-Term Climate Projections 
 
As discussed in Chapters 1 (Section 1.4) and 12 (Section 12.2), climate projections are subject to several 
sources of uncertainty. Here three main sources are distinguished. The first arises from natural internal 
variability, which is intrinsic to the climate system, and includes phenomena such as variability in the mid-
latitude storm tracks and the El Nino – Southern Oscillation (ENSO). The existence of internal variability 
places fundamental limits on the precision with which future climate variables can be projected. The second 
is uncertainty concerning the past, present and future forcing of climate system by natural and anthropogenic 
forcing agents such as greenhouse gases, aerosols, solar forcing and land use change. Forcing agents may be 
specified in various ways, for example as emissions or as concentrations (see Section 12.2). The third is 
uncertainty related to the response of the climate system to the specified forcing agents. 
 
Quantifying the uncertainty that arises from each of the three sources is an important challenge. For 
projections, no attempt is made to predict the evolution of the internal variability. Instead, the statistics of 
this variability are included as a component of the uncertainty associated with a projection. The magnitude 
of internal variability can be estimated from observations (Chapters 2, 3, 4) or from climate models (Chapter 
9). Challenges arise in estimating the variability on decadal and longer time scales, and for rare events such 
as extremes, as observational records are often too short to provide robust estimates. 
 
Uncertainty concerning the past forcing of the climate system arises from a lack of direct or proxy 
observations, and from observational errors. This uncertainty can influence future projections of some 
variables (particularly large-scale ocean variables) for years or even decades ahead (e.g., (Meehl and Hu, 
2006; Stenchikov et al., 2009; Gregory, 2010). Uncertainty about future forcing arises from the inability to 
predict future anthropogenic emissions and land use change, and natural forcings (e.g., volcanoes), and from 
uncertainties concerning carbon cycle and other biogeochemical feedbacks (Chapters 6, 12 and Annex 
II.4.1). The uncertainties in future anthropogenic forcing are typically investigated through the development 
of specific scenarios (e.g., for emissions or concentrations), such as the RCP scenarios (Chapters 1 and 8). 
Different scenarios give rise to different climate projections, and the spread of such projections is commonly 
described as scenario uncertainty. The sensitivity of climate projections to alternative scenarios for future 
anthropogenic emissions is discussed especially in Section 11.3.6.1 
 
To project the climate response to specified forcing agents, climate models are required. The term model 
uncertainty describes uncertainty about the extent to which any particular climate model provides an 
accurate representation of the real climate system. This uncertainty arises from approximations required in 
the development of models. Such approximations affect the representation of all aspects of the climate 
including natural internal variability and the response to external forcings. As discussed in Chapter 1 
(Section 1.4.2), the term model uncertainty is sometimes used in a narrower sense to describe the spread 
between projections generated using different models or model versions; however, such a measure is crude 
as it takes no account of factors such as model quality (Chapter 9) or model independence. The term model 
response uncertainty is used here to describe the dimension of model uncertainty that is directly related to 
the response to external forcings. To obtain projections of extreme events such as tropical cyclones, or 
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regional phenomena such as orographic rainfall, it is sometimes necessary to employ a dynamical or 
statistical downscaling procedure. Such downscaling introduces an additional dimension of model 
uncertainty (e.g., Alexandru et al. (2007). 
 
The relative importance of the different sources of uncertainty depends on the variable of interest, the space 
and time scales involved (Meehl et al. (2007b); Section 10.5.4.3), and the lead-time of the projection. Figure 
11.8 provides an illustration of these dependencies based on an analysis of CMIP5 projections (following 
(Hawkins and Sutton, 2009; Hawkins and Sutton, 2011; Yip et al., 2011). In this example, the forcing-related 
uncertainty is estimated using the spread of projections for different RCP scenarios (i.e., scenario 
uncertainty), whilst the spread amongst different models for individual RCP scenarios is used as a measure 
of the model response uncertainty. Internal variability is estimated from the models as in Hawkins and 
Sutton (2009). Key points are: 1) the uncertainty in near-term projections is dominated by internal variability 
and model spread. This finding provides some of the rationale for considering near-term projections 
separately from long-term projections. Note, however, that the RCP scenarios do not sample the full range of 
uncertainty in future anthropogenic forcing, and that uncertainty in aerosol forcings in particular may be 
more important than is suggested by Figure 11.8 (see Section 11.3.6.1); 2) internal variability becomes 
increasingly important on smaller space and time scales; 3) for projections of precipitation, scenario 
uncertainty is less important and (on regional scales) internal variability is generally more important than for 
projections of surface air temperature; 4) the full model uncertainty may well be larger or smaller than the 
model spread due to common errors or unrealistic models. 
 
A key quantity for any climate projection is the ‘signal-to-noise’ ratio (Christensen et al., 2007), where the 
‘signal’ is a measure of the amplitude of the projected climate change, and the noise is a measure of the 
uncertainty in the projection. Higher signal-to-noise ratios indicate more robust projections of change and/or 
changes that are large relative to background levels of variability. Depending on the purpose, it may be 
useful to identify the noise with the total uncertainty, or with a specific component such as the internal 
variability). The evolution of the signal-to-noise ratio with lead-time depends on whether the signal grows 
more rapidly than the noise, or vice versa. Figure 11.8 (top right) shows that, when the noise is identified 
with the total uncertainty, the signal-to-noise ratio for surface air temperature is typically higher at lower 
latitudes and has a maximum at a lead time of a few decades (Cox and Stephenson, 2007; Hawkins and 
Sutton, 2009). The former feature is primarily a consequence of the greater amplitude of internal variability 
in mid-latitudes. The latter feature arises because over the first few decades, when scenario uncertainty is 
small, the signal grows most rapidly, but subsequently, the contribution from scenario uncertainty grows 
more rapidly than does the signal, so the signal-to-noise ratio falls. 
 
[INSERT FIGURE 11.8 HERE] 
Figure 11.8: Sources of uncertainty in climate projections as a function of lead time based on an analysis of CMIP5 
results. a) Projections of global mean decadal mean surface air temperature to 2100 together with a quantification of the 
uncertainty arising from internal variability (orange), model spread (blue), and RCP scenario spread (green). b) shows 
the signal-to-uncertainty ratio for various global and regional averages. The signal is defined as the simulated multi-
model mean change in surface air temperature relative to the simulated mean surface air temperature in the period 
1986–2005, and the uncertainty is defined as the total uncertainty. c), d), e), f) show the fraction of variance explained 
by each source of uncertainty for: global mean decadal and annual mean temperature (c), European (30°N–
75°N, 10°W–40°E) decadal mean boreal winter (December to February) temperature (d) and precipitation (f), and East 
Asian (5°N–45°N, 67.5°E–130°E) decadal mean boreal summer (June to August) precipitation (e). See text and 
Hawkins and Sutton (2009); Hawkins and Sutton (2011) for further details. 
 
11.3.2 Near-Term Projected Changes in the Atmosphere and Land Surface 
 
11.3.2.1 Surface Temperature 
 
11.3.2.1.1 Global mean surface air temperature 
Figure 11.9 (a) and (b) show CMIP5 projections of global mean surface air temperature under RCP4.5. The 
5–95% range for the projected anomaly for the period 2016–2035, relative to the reference period 1986–
2005, is 0.47°C–1.00°C (see also Table 12.2.). However, as discussed in 11.3.1.1, this range provides only a 
very crude measure of uncertainty, and there is no guarantee that the real world must lie within this range. 
Obtaining better estimates is an important challenge. One approach involves initialising climate models 
using observations, as discussed in 11.2. Figure 11.9 (b) compares multi-model initialised climate 
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predictions (8 models from (Smith et al., 2013b), initialized in 2011; 14 CMIP5 decadal prediction 
experiment models following the methodology of (Meehl and Teng, 2012), initialized in 2006) with the 
‘raw’ uninitialized CMIP5 projections. The 5–95% range for both sets of initialised predictions is cooler (by 
~15% for the median values) than the corresponding range for the raw projections, particularly at the upper 
end. The differences are partly a consequence of initialising the models in a state that is cool (in comparison 
to the median of the raw projections) as a result of the recent hiatus in global mean surface temperature rise 
(see Box 9.2). However, it is not yet possible to attribute all of the reasons with confidence because the raw 
projections are based on a different, and larger, set of models than the initialised predictions, and because of 
uncertainties related to the bias adjustment of the initialised predictions (Goddard et al., 2013; Meehl et al., 
2013d) 
 
Another approach to making projections involves weighting models according to some measure of their 
quality (see Chapter 9). A specific approach of this type, known as ASK (Allen et al., 2000; Stott and 
Kettleborough, 2002) is based on the use of results from detection and attribution studies (Chapter 10), in 
which the fit between observations and model simulations of the past is used to scale projections of the 
future. ASK requires specific simulations to be carried out with individual forcings (e.g., anthropogenic 
greenhouse gas forcing alone), and only some of the centres participating in CMIP5 have carried out the 
necessary integrations. Biases in ASK derived projections may arise from errors in the specified forcings, or 
in the simulated patterns of response, and/or from non-linearities in the responses to forcings. 
 
Figure 11.9 (c) shows the projected range of global mean surface air temperature change derived using the 
ASK approach for RCP4.5 (Stott and G. Jones, 2012; Stott et al., 2013) applied to 6 models and compares 
this with the range derived from the 42 CMIP5 models. In this case decadal means are shown. The 5–95% 
confidence interval for the projected temperature anomaly for the period 2016 to 2035, based on the ASK 
method, is 0.39°C–0.87°C. As for the initialized predictions shown in Figure 11.9 (b), both the lower and 
upper values are below the corresponding values obtained from the raw CMIP5 results, although there is 
substantial overlap between the two ranges. The relative cooling of the ASK results is directly related to 
evidence presented in Chapter 10 (Section 10.3.1) that “This provides evidence that some CMIP5 models 
have a higher sensitivity to greenhouse gases and a larger response to other anthropogenic forcings 
(dominated by the effects of aerosols) than the real world (medium confidence).” The ASK results and the 
initialised predictions both suggest that those CMIP5 models that warm most rapidly over the period (1986–
2005)–(2016–2035) may be inconsistent with the observations. This possibility is also suggested by 
comparing the models with the observed rate of warming since 1986—see Box 9.2 for a full discussion of 
this comparison. Lastly, Figure 11.9 also shows a statistical prediction for global mean surface air 
temperature, using the method of Lean and Rind (2009), which uses multiple linear regression to decompose 
observed temperature variations into distinct components. This prediction is very similar to the CMIP5 
multi-model median. 
 
The projections shown in Figure 11.9 assume the RCP4.5 scenario and the 1986–2005 reference period. In 
Section 11.3.6 additional uncertainties, associated with future forcing, climate responses, and sensitivity to 
the choice of reference period, are discussed. An overall assessment of the likely range for future global 
mean surface air temperature is provided in Section 11.3.6.3.  
 
For the remaining projections in this chapter the spread amongst the CMIP5 models is used as a simple, but 
crude, measure of uncertainty. The extent of agreement between the CMIP5 projections provides rough 
guidance about the likelihood of a particular outcome. But—as partly illustrated by the discussion above—it 
must be kept firmly in mind that the real world could fall outside of the range spanned by these particular 
models. See Section 11.3.6 for further discussion. 
 
[INSERT FIGURE 11.9 HERE] 
Figure 11.9: a) Projections of global mean, annual mean surface air temperature 1986–2050 (anomalies relative to 
1986–2005) under RCP4.5 from CMIP5 models (blue lines, one ensemble member per model), with four observational 
estimates (HadCRUT3: Brohan et al. (2006); ERA-Interim: Simmons et al. (2010); GISTEMP: Hansen et al., 2010; 
NOAA: Smith et al. (2008) for the period 1986–2011 (black lines); b) as in a) but showing the 5–95% range (grey and 
blue shades, with the multi-model median in white) of annual mean CMIP5 projections using one ensemble member 
per model from RCP4.5 scenario, and annual mean observational estimates (solid black line). The maximum and 
minimum values from CMIP5 are shown by the grey lines. Red hatching shows 5–95% range for predictions initialized 
in 2006 for 14 CMIP5 models applying the Meehl and Teng (2012) methodology. Black hatching shows the 5–95% 
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range for predictions initialized in 2011 for 8 models from Smith et al. (2013b). c) as a) but showing the 5–95% range 
(grey and blue shades, with the multi-model median in white) of decadal mean CMIP5 projections using one ensemble 
member per model from RCP4.5 scenario, and decadal mean observational estimates (solid black line). The maximum 
and minimum values from CMIP5 are shown by the grey lines. The dashed black lines show an estimate of the 
projected 5–95% range for decadal mean global mean surface air temperature for the period 2016–2040 derived using 
the ASK methodology applied to 6 CMIP5 GCMs (from Stott et al. (2013). The red line shows a statistical prediction 
based on the method of Lean and Rind (2009), updated for RCP4.5. 
 
11.3.2.1.2 Regional and seasonal patterns of surface warming 
The geographical pattern of near-term surface warming simulated by the CMIP5 models (Figure 11.10) is 
consistent with previous IPCC reports in a number of key aspects, although weaknesses in the ability of 
current models to capture observed regional trends (Box 11.2) must be kept in mind. First, temperatures over 
land increase more rapidly than over sea (e.g., (Manabe et al., 1991; Sutton et al., 2007). Processes that 
contribute to this land-sea warming contrast include different local feedbacks over ocean and land and 
changes in atmospheric energy transport from ocean to land regions (e.g., (Lambert and Chiang, 2007; 
Vidale et al., 2007; Shimpo and Kanamitsu, 2009; Fasullo, 2010; Boer, 2011; Joshi et al., 2011). 
 
Second, the projected warming in wintertime shows a pronounced polar amplification in the Northern 
Hemisphere (see Box 5.2). This feature is found in virtually all coupled model projections, but the CMIP3 
simulations generally appeared to underestimate this effect in comparison to observations (Stroeve et al., 
2007; Screen and Simmonds, 2010; Callaghan and Power, 2011). Several studies have isolated mechanisms 
behind this amplification, which include: reductions in snow cover and retreat of sea ice (e.g., (Serreze et al., 
2007; Comiso et al., 2008); changes in atmospheric and oceanic circulations (Chylek et al., 2009; Simmonds 
and Keay, 2009; Chylek et al., 2010); presence of anthropogenic soot in Arctic environment (Flanner et al., 
2007; Quinn et al., 2008; Jacobson, 2010; Ramana et al., 2010); and increases in cloud cover and water 
vapour (Francis, 2007; Schweiger et al., 2008). Most studies argue that changes in sea ice are central to the 
polar amplification—see Section 11.3.4.1 for further discussion. Further information about the regional 
changes in surface air temperature projected by the CMIP5 models is presented in Annex I. 
 
[INSERT FIGURE 11.10 HERE] 
Figure 11.10: CMIP5 multi-model ensemble mean of projected changes in DJF and JJA surface air temperature for the 
period 2016–2035 relative to 1986–2005 under RCP4.5 scenario (left panels). The right panels show an estimate of the 
model-estimated internal variability (standard deviation of 20-year means). Hatching in left-hand panels indicates areas 
where projected changes are small compared to the internal variability (i.e., smaller than one standard deviation of 
estimated internal variability), and stippling indicates regions where the multi-model mean projections deviate 
significantly from the simulated 1986–2005 period (by at least two standard deviations of internal variability) and 
where at least 90% of the models agree on the sign of change. The number of models considered in the analysis is listed 
in the top-right portion of the panels; from each model one ensemble member is used. See Box 12.1 in Chapter 12 for 
further details and discussion. Technical details are in Annex I. 
 
As discussed in Sections 11.1 and 11.3.1, the signal of climate change is emerging against a background of 
natural internal variability. The concept of “emergence” describes the magnitude of the climate change 
signal relative to this background variability, and may be useful for some climate impact assessments (e.g., 
AR4, Chapter 11, Table 11.1; (Mahlstein et al., 2011; Hawkins and Sutton, 2012); see also FAQ 10.2). 
However, it is important to recognise that there is no single metric of emergence. It depends on user-driven 
choices of variable, space and time scale, of the baseline relative to which changes are measured (e.g., pre-
industrial versus recent climate), and of the threshold at which emergence is defined. 
 
Figure 11.11 quantifies the ‘Time of Emergence’ (ToE) of the mean warming signal relative to the recent 
past (1986–2005), based on the CMIP5 RCP4.5 projections, using a spatial resolution of 2.5° latitude × 2.5° 
longitude, the standard deviation of interannual variations as the measure of internal variability, and a signal-
to-noise threshold of 1. Because of the dependence on user-driven choices, the most important information 
in Figure 11.11 is the geographical and seasonal variation in ToE, seen in the maps, and the variation in ToE 
between models, shown in the histograms. Consistent with Mahlstein et al. (2011), the earliest ToE is found 
in the tropics, with ToE in mid-latitudes typically a decade or so later. Over North Africa and Asia, earlier 
ToE is found for the warm half-year (April to September) than for the cool half-year. Earlier ToE is 
generally found for larger space and time scales, because the variance of natural internal variability 
decreases with averaging (Section 11.3.1.1 and AR4, Chapter 10, Section 10.5.4.3). This tendency can be 
seen in Figure 11.11 by comparing the median value of the histograms for area averages with the area 
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average of the median ToE inferred from the maps (e.g., for Region 2). The large range of values for ToE 
implied by different CMIP5 models, which can be as much as 30 years, is a consequence of differences in 
both the magnitude of the warming signal simulated by the models (i.e., uncertainty in the climate response, 
see Section 11.3.1.1) and in the amplitude of simulated natural internal variability (Hawkins and Sutton, 
2012). 
 
In summary, it is very likely that anthropogenic warming of surface air temperature over the next few 
decades will proceed more rapidly over land areas than over oceans, and that the warming over the Arctic in 
winter will be greater than the global mean warming over the same period. Relative to background levels of 
natural internal variability, near-term increases in seasonal mean and annual mean temperatures are expected 
to occur more rapidly in the tropics and subtropics than in mid-latitudes (high confidence). 
 
[INSERT FIGURE 11.11 HERE] 
Figure 11.11: Time of Emergence (ToE) of significant local warming derived from 37 CMIP5 models under the 
RCP4.5 scenario. Warming is quantified as the half-year mean temperature anomaly relative to 1986–2005, and the 
noise as the standard deviation of half-year mean temperature derived from a control simulation of the relevant model. 
Central panels show the median time at which the signal-to-noise ratio exceeds a threshold value of 1 for (left) the 
October to March half year and (right) the April to September half year, using a spatial resolution of 2.5° × 2.5°. 
Histograms show the distribution of ToE for area averages over the regions indicated obtained from the different 
CMIP5 models. Full details of the methodology may be found in Hawkins and Sutton (2012). 
 
11.3.2.2 Free Atmospheric Temperature 
 
Changes in zonal mean temperature for the near-term period (2016–2035 compared to the base period 1986–
2005) for the multi-model CMIP5 ensemble show a pattern similar to that in the CMIP3, with warming in 
the troposphere and cooling in the stratosphere of a couple of degrees that is significant even in the near-term 
period. There is relatively greater warming in the tropical upper troposphere and northern high latitudes. A 
more detailed assessment of observed and simulated changes in free atmospheric temperatures can be found 
in Chapter 10, Section 10.3.1.2.1 and Chapter 12, Section 12.4.3.2. 
 
11.3.2.3 The Water Cycle 
 
As discussed in the AR4 (Chapter 10, Section 10.3.6; (Meehl et al., 2007b), the IPCC Technical Paper on 
Climate Change and Water (Bates et al., 2008) and the Special Report on Managing the Risks of Extreme 
Events and Disasters to Advance Climate Change Adaptation (Seneviratne et al., 2012) a general 
intensification of the global hydrological cycle, and of precipitation extremes, are expected for a future 
warmer climate (e.g., (Huntington, 2006; Williams et al., 2007; Wild et al., 2008; Chou et al., 2009; Dery et 
al., 2009; O'Gorman and Schneider, 2009; Lu and Fu, 2010; Seager et al., 2010; Wu et al., 2010; Kao and 
Ganguly, 2011; Muller et al., 2011; Durack et al., 2012). In this section, projected changes in the time-mean 
hydrological cycle are discussed; changes in extremes, are presented in Section 11.3.2.5 while processes 
underlying precipitation changes are treated in Chapter 7. 
 
11.3.2.3.1 Changes in precipitation 
AR4 projections of the spatial patterns of precipitation change in response to greenhouse gas forcing 
(Chapter 10, Section 10.3.2) showed consistency between models on the largest scales (i.e., zonal means) but 
large uncertainty on smaller scales. The consistent pattern was characterized by increases at high latitudes 
and in wet regions (including the maxima in mean precipitation found in the tropics), and decreases in dry 
regions (including large parts of the subtropics). Large uncertainties in the sign of projected change were 
seen especially in regions located on the borders between regions of increases and regions of decreases. 
More recent research has highlighted the fact that if models agree that the projected change is small in some 
sense relative to internal variability, then agreement on the sign of the change is not expected (Tebaldi et al., 
2011; Power et al., 2012). This recognition led to the identification of subregions within the border regions, 
where models agree that projected changes are either zero or small (Power et al., 2012). This, and other 
considerations, also led to the realisation that the consensus amongst models on precipitation projections is 
more widespread than might have been inferred on the basis of the projections described in the AR4 (Power 
et al., 2012). Information on the reliability of near-term projections can also be obtained from verification of 
past regional trends (Räisänen (2007); Box 11.2) 
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Since the AR4 there has also been considerable progress in understanding the factors that govern the spatial 
pattern of change in precipitation (P) and precipitation-evaporation (P-E), and inter-model differences in 
these patterns. The general pattern of wet-get-wetter (also referred to as ‘rich-get-richer’, e.g., (Held and 
Soden, 2006; Chou et al., 2009; Allan et al., 2010) and dry-get-drier has been confirmed, although with 
deviations in some dry regions at present that are projected to become wetter by some models, e.g., 
Northeast Brazil in austral summer and East Africa (see Annex I). It has been demonstrated that the wet-get-
wetter pattern implies an enhanced seasonal precipitation range between wet and dry seasons in the tropics, 
and enhanced inter-hemispheric precipitation gradients (Chou et al., 2007).  
 
It has recently been proposed that analysis of the energy budget, previously applied only to the global mean, 
may provide further insights into the controls on regional changes in precipitation (Levermann et al., 2009; 
Muller and O'Gorman, 2011; O'Gorman et al., 2012). Muller and O'Gorman (2011) argue in particular that 
changes in radiative and surface sensible heat fluxes provide a guide to the local precipitation response over 
land. Projected and observed patterns of oceanic precipitation change in the tropics tend to follow patterns of 
SST change because of local changes in atmospheric stability, such that regions warming more than the 
tropics as a whole tend to exhibit an increase in local precipitation, while regions warming less tend to 
exhibit reduced precipitation (Johnson and Xie, 2010; Xie et al., 2010). 
 
AR4 (Section 10.3.2, Chapter 11) showed that, especially in the near term, and on regional or smaller scales, 
the magnitude of projected changes in mean precipitation was small compared to the magnitude of natural 
internal variability (Christensen et al., 2007). Recent work has confirmed this result, and provided more 
quantification (e.g., (Hawkins and Sutton, 2011; Hoerling et al., 2011; Rowell, 2011; Deser et al., 2012; 
Power et al., 2012). Hawkins and Sutton (2011) presented further analysis of CMIP3 results and found that, 
on spatial scales of the order of 1000 km, internal variability contributes 50–90% of the total uncertainty in 
all regions for projections of decadal and seasonal mean precipitation change for the next decade, and is the 
most important source of uncertainty for many regions for lead times up to three decades ahead (Figure 
11.8). Thereafter, response uncertainty is generally dominant. Forcing uncertainty (except for that relating to 
aerosols, see Section 11.4.7) is generally negligible for near-term projections. The signal-to-noise ratio for 
projected changes in seasonal mean precipitation is highest in the subtropics and at high-latitudes. Rowell 
(2011) found that the contribution of response uncertainty to the total uncertainty (response plus internal 
variability) in local precipitation change is highest in the deep tropics, particularly over South America, 
Africa, the east and central Pacific, and the Atlantic. Over tropical land and summer mid-latitude continents 
the representation of SST changes, atmospheric processes, land surface processes, and the terrestrial carbon 
cycle all contribute to the uncertainty in projected changes in rainfall. 
 
In addition to the response to greenhouse gas forcing, forcing from natural and anthropogenic aerosols may 
exert significant impacts on regional patterns of precipitation change as well as on global mean temperature 
(Bollasina et al., 2011; Yue et al., 2011; Fyfe et al., 2012). Precipitation changes may arise as a consequence 
of temperature and stratification changes driven by aerosol-induced radiative effects, and/or as indirect 
aerosol effects on cloud microphysics (Chapter 7). Future emissions of aerosols and aerosol precursors are 
subject to large uncertainty, and further large uncertainties arise in assessing the responses to these 
emissions. These issues are discussed in Section 11.3.6. 
 
Figures 11.12 and 11.13a present projections of near-term changes in precipitation from CMIP5, regional 
maps and time series are presented in Annex I. The basic pattern of wet regions tending to get wetter and dry 
regions tending to get dryer is apparent, although with some regional deviations as mentioned previously. 
However, the large response uncertainty is evident in the substantial spread in the magnitude of projected 
change simulated by different climate models (Figure 11.13a). In addition, it is important to recognize—as 
discussed in previous sections—that models may agree and still be in error (e.g., Power et al. (2012). In 
particular, there is some evidence from comparing observations with simulations of the recent past that 
climate models might be underestimating the magnitude of changes in precipitation in many regions (Pincus 
et al., 2008; Liepert and M.Previdi, 2009; Schaller et al., 2011; Joetzjer et al., 2012) This evidence is 
discussed in detail in Chapter 9 (Section 9.4.1 and Box 11.2), and could imply that projected changes in 
precipitation are underestimated by current models; however, the magnitude of any underestimation has yet 
to be quantified, and is subject to considerable uncertainty. 
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Figures 11.12 and 11.13a also highlight the large amplitude of the natural internal variability of mean 
precipitation. On regional scales, mean projected changes are almost everywhere smaller than the estimated 
standard deviation of natural internal variability. The only exceptions are the northern high latitudes and the 
equatorial Pacific Ocean (Figure 11.12). For zonal means (Figure 11.13a) and at high latitudes only, the 
projected changes relative to the recent past exceed the estimated standard deviation of internal variability.  
 
Overall, zonal mean precipitation will very likely increase in high and some of the mid latitudes, and will 
more likely than not decrease in the subtropics. At more regional scales precipitation changes may be 
influenced by anthropogenic aerosol emissions and will be strongly influenced by natural internal variability.  
 
[INSERT FIGURE 11.12 HERE] 
Figure 11.12: CMIP5 multi-model ensemble mean of projected changes (%) in precipitation for 2016–2035 relative to 
1986–2005 under RCP4.5 for the four seasons. The number of CMIP5 models used is indicated in the upper-right 
corner. Hatching and stippling as in Figure 11.10. 
 
[INSERT FIGURE 11.13 HERE] 
Figure 11.13: CMIP5 multi-model projections of changes in annual and zonal mean (a) precipitation (%) and (b) 
precipitation minus evaporation (mm/day) for the period 2016–2035 relative to 1986–2005 under RCP4.5. The light 
blue denotes the 5–95% range, the dark blue the 17–83% range of model spread. The grey indicates the 1σ range of 
natural variability derived from the pre-industrial control runs (see Annex I for details). 
 
11.3.2.3.2 Changes in evaporation, evaporation minus precipitation, runoff, soil moisture, relative humidity 

and specific humidity 
Since the variability of the atmospheric moisture storage is negligible, global mean increases in evaporation 
are required to balance increases in precipitation in response to anthropogenic forcing (Meehl et al., 2007a; 
Trenberth et al., 2007; Bates et al., 2008; Lu and M.Cai, 2009). The global atmospheric water content is 
constrained by the Clausius-Clapeyron equation to increase at around 7%/K; however, both the global 
precipitation and evaporation in global warming simulations increase at 1–3%/K (Lambert and Webb, 2008; 
Lu and M.Cai, 2009).  
 
Changes in evapotranspiration over land are influenced not only by the response to radiative forcing, but also 
by the vegetation response to elevated CO2 concentrations. Physiological effects of CO2 may involve both 
the stomatal response, which acts to restrict transpiration (Field et al., 1995; Hungate et al., 2002; Cao et al., 
2009, 2010; Lammertsma et al., 2011), and an increase in plant growth and leaf area, which acts to increase 
evapotranspiration (El Nadi, 1974; Bounoua et al., 2010). Simulation of the latter process requires the 
inclusion of vegetation models that allow spatial and temporal variability in the amount of active biomass, 
either by changes in the phenological cycle or changes in the biome structure. 
 
In response to greenhouse gas forcing, dry land areas tend to show a reduction of evaporation and often 
precipitation, accompanied by a drying of the soil and an increase of surface temperature, in response to 
decreases in latent heat fluxes from the surface (e.g., (Fischer et al., 2007; Seneviratne et al., 2010). Jung et 
al. (2010) use a mixture of observations and models to illustrate a recent global mean decline in land-surface 
evaporation due to soil-moisture limitations. Accompanying precipitation effects are more subtle, as there 
are significant uncertainties and large geographical variations regarding the soil-moisture precipitation 
feedback (Hohenegger et al., 2009; Taylor et al., 2011). AR4 projections (Meehl et al. (2007b) of annual 
mean soil moisture changes for the 21st century showed a tendency for decreases in the subtropics, southern 
South America and the Mediterranean region, and increases in limited areas of east Africa and central Asia. 
Changes seen in other regions were mostly not consistent or statistically significant. 
 
AR4 projections of 21st century runoff changes (Meehl et al., 2007b) showed consistency in sign among 
models indicating annual mean reductions in southern Europe and increases in Southeast Asia and at high 
northern latitudes. Projected changes in global mean runoff associated with the physiological effects of 
doubled carbon dioxide concentrations show increases of 6–8% relative to pre-industrial levels, an increase 
that is comparable to that simulated in response to radiative forcing changes (11% ± 6%) (Betts et al., 2007; 
Cao et al., 2010). Gosling et al. (2011) assess the projected impacts of climate change on river runoff from 
global and basin-scale hydrological models obtaining increased runoff with global warming in the Liard 
(Canada), Rio Grande (Brazil) and Xiangxi (China) basins and decrease for the Okavango (southwest 
Africa). 
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Consideration of hydrological drought conditions employs a range of different dryness indicators, such as 
soil moisture or other drought indices that integrate precipitation and evaporation effects (Seneviratne et al., 
2012). There are large uncertainties in regional drought projections (Burke and Brown, 2008), and only very 
few studies have addressed the near-term future (Sheffield and Wood, 2008; Dai, 2011). In order to provide 
an indication of future changes of water availability, Figure 11.13b presents zonal-mean changes in 
precipitation minus evaporation (P-E) from CMIP5. As in the case of precipitation (Figure 13a), the 
uncertainty is dominated by model differences as opposed to natural variability (compare blue versus grey 
shading). The results are consistent with the wet-get-wetter and dry-get-dryer pattern (e.g., Held and Soden 
2006): In the high latitudes and the tropics, most of the models project zonal-mean increases in P-E, which 
over land would need to be compensated by increases in runoff (see below). In contrast, zonal-mean 
projected changes in the subtropics are negative, indicating decreases in water availability. While this pattern 
is evident in most or all of the models, and while several studies project drought increases in the near-term 
future,(Sheffield and Wood, 2008; Dai, 2011) the assessment is debated in the literature based on 
discrepancies in the recent past and due to natural variability (Seneviratne et al., 2012; Sheffield et al., 2012). 
 
The global distribution of the 2016–2035 changes in annual mean evaporation, evaporation minus 
precipitation (E-P), surface runoff, soil moisture, relative humidity and surface-level specific humidity from 
the CMIP5 multi-model ensemble under RCP4.5 are shown in Figure 11.14. Changes in evaporation over 
land (Figure11.14a) are mostly positive with largest values at northern high latitudes in agreement with 
projected temperature increases (Figure 11.10). Over the oceans, evaporation is also projected to increase in 
most regions. Projected changes are larger than the estimated standard deviation of internal variability only 
at high latitudes and over the tropical oceans. Decreases in evaporation over land (i.e., Australia, southern 
Africa, northeastern South America and Mexico) and oceans are smaller than the estimated standard 
deviation of internal variability; the only exception is the western North Atlantic, although the model 
agreement is low in that region. Projected changes in (E-P) over land (Figure 11.14b) are generally 
consistent with the zonal mean changes shown in Fig.11.13b. In the high northern latitudes and the tropics, 
(E-P) changes are mostly negative as dominated by precipitation increases (Figure 11.12), while in the 
subtropics several areas exhibit increases in (E-P), in particular in Europe, western Australia and central-
western U.S. However, in most locations changes are smaller than internal variability. 
 
Annual mean shallow soil moisture (Figure 11.14d) shows decreases in most subtropical regions (except La 
Plata basin in South America) and in central Europe, and increases in northern mid-to-high latitudes. 
Projected changes are larger than the estimated internal variability only in southern Africa, the Amazon 
region and Europe. Projected changes in runoff (Figure 11.14c) show decreases in northern Africa, western 
Australia, southern Europe and southwestern U.S. and increases larger than the internal variability in 
northwestern Africa, southern Arabia and southeastern South America associated to the projected changes in 
precipitation (Figure 11.12). Due to the simplified hydrological models in many CMIP5 climate models, the 
projections of soil moisture and runoff have large model uncertainties. 
 
Changes in near-surface specific humidity are positive with largest values at northern high latitudes when 
expressed in percentage terms (Figure 11.14e). This is consistent with the projected increases in temperature 
when assuming constant relative humidity. These changes are larger than the estimated standard deviation of 
internal variability almost everywhere: the only exceptions are oceanic regions like the northern North 
Atlantic and around Antarctica. In comparison, absolute changes in near-surface relative humidity (Figure 
11.14f) are much smaller, on the order of a few percent, with general decreases over most land areas, and 
small increases over the oceans. Significant decreases relative to natural variability are projected in the 
Amazonia, southern Africa and Europe, although the model agreement in these regions is low. 
 
Over the next few decades increases in near-surface specific humidity are very likely, and projected increases 
in evaporation are likely in many land regions. There is low confidence in projected changes in soil moisture 
and surface runoff.  
 
[INSERT FIGURE 11.14 HERE] 
Figure 11.14: CMIP5 multi-model annual mean projected changes for the period 2016–2035 relative to 1986–2005 
under RCP4.5 for: (a) evaporation (%), (b) evaporation minus precipitation (E-P, mm day–1), (c) total runoff (%), (d) 
soil moisture in the top 10 cm (%), (e) relative change in specific humidity (%), and (f) absolute change in relative 
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humidity (%). The number of CMIP5 models used is indicated in the upper-right corner of each panel. Hatching and 
stippling as in Figure 11.10. 
 
11.3.2.4 Atmospheric Circulation 
 
11.3.2.4.1 Northern Hemisphere extra-tropical circulation 
In the Northern Hemisphere extra-tropics, some AOGCMs indicate changes to atmospheric circulation from 
anthropogenic forcing by the mid-21st century including a poleward shift of the jet streams and associated 
zonal mean storm tracks (Miller et al., 2006; Pinto et al., 2007; Paeth and Pollinger, 2010) and a 
strengthening of the Atlantic storm track (Pinto et al., 2007), Figure 11.15. Consistent with this, the CMIP5 
AOGCMs exhibit an ensemble mean increase in the NAO and NAM indices by 2050, especially in autumn 
and winter (Gillett et al., 2013).  
 
However, there are reasons to be cautious over these near term projections. While models simulate the broad 
features of the large scale circulation well, there remain quite significant biases in many models (see 
Sections 9.4.1.3.3 and 9.5.3.2). The response of the Northern Hemisphere circulation can be sensitive to 
small changes in model formulation (Sigmond et al., 2007), and to features that are known to be poorly 
simulated in many climate models. These features include high- and low-latitude physics (Rind, 2008; 
Woollings, 2010), ocean circulation (Woollings and Blackburn, 2012), tropical circulation (Haarsma and 
Selten, 2012) and stratospheric dynamics (Huebener et al., 2007; Morgenstern et al., 2010; Scaife et al., 
2012). As a result, there is considerable model uncertainty in the response of the northern hemisphere storm 
track position (Ulbrich et al., 2008), stationary waves (Brandefelt and Kornich, 2008) and the jet streams 
(Miller et al., 2006; Ihara and Kushnir, 2009; Woollings and Blackburn, 2012). Further, CMIP5 models 
show that the response of NH extra-tropical circulation to even strong greenhouse forcing remains weak 
compared to recent multidecadal variability and a recent detection and attribution study suggests that 
tropospheric ozone and aerosol changes may have been a key driver to NH extra-tropical circulation changes 
(Gillett et al., 2013). Some AOGCMs simulate multi-decadal NAO variability as large as that recently 
observed with no external forcing (Selten et al., 2004; Semenov et al., 2008). This suggests that internal 
variability could dominate the anthropogenically forced response in the near term (Deser et al., 2012).  
 
Some studies have predicted a shift to the negative phase of the Atlantic Multidecadal Oscillation (AMO) 
over the coming few decades, with potential impacts on atmospheric circulation around the Atlantic sector 
(Knight et al., 2005; Sutton and Hodson, 2005; Folland et al., 2009). It has also been suggested that there 
may be significant changes in solar forcing over the next few decades, which could have an influence on 
NAO-related atmospheric circulation (Lockwood et al., 2011), although these predictions are highly 
uncertain (see Section 11.3.6.2.2). 
 
There is only medium confidence in near-term projections of a northward shift of northern hemisphere storm 
track and westerlies, and an increase of the NAO/NAM because of the large response uncertainty and the 
potentially large influence of internal variability. 
 
11.3.2.4.2 Southern Hemisphere extra-tropical circulation 
Increases in greenhouse gases, and related dynamical processes, are projected to lead to poleward shifts in 
the annual-mean position of SH extra-tropical storm tracks and winds (Figure 11.17; Chapters 10 and 12). A 
key issue in projections of near-term Southern Hemisphere (SH) extra-tropical circulation change is the 
extent to which changes driven by stratospheric ozone recovery will counteract changes driven by increasing 
greenhouse gases. Several observational and modeling studies (Gillett and Thompson, 2003; Shindell and 
Schmidt, 2004; Arblaster and Meehl, 2006; Roscoe and Haigh, 2007; Fogt et al., 2009; Polvani et al., 2011a; 
Gillett et al., 2013) indicate that, over the late 20th and early 21st centuries, the observed summertime 
poleward shift of the westerly jet (a positive Southern Annular Mode, or SAM) has primarily been caused 
but the depletion of stratospheric ozone, with increasing GHGs contributing only a smaller fraction to the 
observed trends.. The latest generation of climate models project substantially smaller poleward trends in SH 
atmospheric circulation in austral summer over the coming half century compared to those over the late-20th 
century, as the recovery of stratospheric ozone will oppose the effects of continually increseasing GHGs. 
(Arblaster et al., 2011; McLandress et al., 2011; Polvani et al., 2011a; Eyring et al., 2013a) Locally, internal 
variability is likely to be a dominant contributor to near-term changes in lower-tropospheric zonal winds 
(Figure 11.17). The average 2016–2035 SH extra-tropical storm tracks and zonal winds are likely to shift 
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poleward relative to 1986–2005. However, even though a full recovery of the ozone hole is not expected 
until the 2060s–2070s (Table 5.4,(World Meteorological Organization (WMO), 2010); see Chapter 12), it is 
likely that over the near term there will be a reduced rate in the Austral summertime poleward shift of the SH 
circumpolar trough, SH extra-tropical storm tracks and winds compared to its movement over the past 30 
years, including the possibility of no detectable shift. 
 
11.3.2.4.3 Tropical circulation 
Increases in greenhouse gases are expected to lead to a poleward shift of the Hadley circulation (Lu et al., 
2007), Chapter 12, Figure 11.18). Relative to the late 20th century, the tendency towards a poleward 
expansion of the Hadley circulation will start to emerge by the mid 30s of the 21st century, with certain 
intra-model consensus in the SH expansion, despite the counteracting effect of ozone recovery (Figure 
11.18). As with near-term changes in SH extra-tropical circulation, a key for near-term projections of the 
structure of the SH Hadley Circulation is the extent to which future stratospheric ozone recovery will 
counteract the impact of greenhouse gases. The poleward expansion of the Hadley Circulation, particularly 
of the SH branch during austral summer, during the later decades of the 20th century has been largely 
attributed to the combined impact of stratospheric ozone depletion (Thompson and Solomon, 2002; Son et 
al., 2008; Son et al., 2009b; Son et al., 2009a; Polvani et al., 2011b; Polvani et al., 2011a; Min and Son, 
2013) and the concurrent increase in GHGs (Arblaster and Meehl, 2006; Arblaster et al., 2011) as discussed 
in the previous section. The poleward expansion of the Hadley Circulation driven by the response of the 
atmosphere to increasing GHGs (Lu et al., 2007; Kang et al., 2011; Staten et al., 2011; Butler et al., 2012) 
would be counteracted in the southern hemisphere by reduced stratospheric ozone depletion but depends on 
the rate of ozone recovery (UNEP and WMO, 2011). Increases in the incoming solar radiation can lead to a 
widening of the Hadley Cell (Haigh, 1996; Haigh et al., 2005) and large volcanic eruption to contraction of 
the tropics and the tropical circulation (Lu et al., 2007; Birner, 2010), so future solar variations and volcanic 
activities could also lead to variations in the width of the Hadley Cell. The poleward extent of the Hadley 
Circulation and associated dry zones can exhibit substantial internal variability (e.g., (Birner, 2010 ; Davis 
and Rosenlof, 2012) that can be as large as its near-term projected changes (Figure 11.18). There is also 
considerable uncertainty in the amplitude of the poleward shift of the Hadley Circulation in response to 
GHGs across multiple AOGCMs (Lu et al. (2007); Figure 11.18). It is likely that the poleward extent of the 
Hadley circulation will increase through the mid-21st century. However, because of the counteracting 
impacts of future changes in stratospheric ozone and greenhouse gas concentrations, it is unlikely that it will 
continue to expand poleward in the southern hemisphere as rapidly as it did in recent decades.  
  
The Hadley cell expansion in the NH has been largely attributed to the low-frequency variability of the SST 
(Hu et al., 2013), the increase of black carbon and tropospheric ozone (Allen and Sherwood, 2011). Internal 
variability in the poleward edge of the northern hemisphere Hadley circulation is large relative the 
radiatively-forced signal (Figure 11.16. Given the complexity in the forcing mechanism of the NH expansion 
and the uncertainties in future concentrations of tropospheric pollutants, there is low confidence in the 
character of near-term changes to the structure of the NH Hadley circulation. 
 
Global climate models and theoretical considerations suggest that a warming of the tropics should lead to a 
weakening of the zonally-asymmetric or Walker circulation (KNUTSON and MANABE, 1995; Held and 
Soden, 2006; Vecchi and Soden, 2007; Gastineau et al., 2009). Aerosol forcing can modify both Hadley and 
Walker circulations, which—depending on the details of the aerosol forcing—may lead to temporary 
reversals or enhancements in any GHG-driven weakening of the Walker circulation (Sohn and Park, 2010; 
Bollasina et al., 2011; Merrifield, 2011; DiNezio et al., 2013). Meanwhile, the strength and structure of the 
Walker circulation are impacted by internal climate variations, such as the El Niño/Southern Oscillation 
(e.g., BATTISTI and SARACHIK (1995), the PDO (e.g., Zhang et al. (1997) and the IPO (Power et al., 
1999; Meehl and Hu, 2006; Power et al., 2006; Meehl and Arblaster, 2011; Power and Kociuba, 2011b; 
Meehl and Arblaster, 2012; Meehl et al., 2013a). Even on timescales of thirty to one hundred years, 
substantial variations in the strength of the Pacific Walker circulation in the absence of changes in radiative 
forcing are possible (Power et al., 2006; Vecchi et al., 2006). Estimated near-term weakening of the Walker 
circulation from CMIP3 models under the A1B scenario (Vecchi and Soden, 2007; Power and Kociuba, 
2011a) are very likely to be smaller than the impact of internal climate variations over fifty-year timescales 
(Vecchi et al., 2006). There is also considerable response uncertainty in the amplitude of the weakening of 
Walker Circulation in response to GHG increase across multiple AOGCMs (Vecchi and Soden, 2007; 
DiNezio et al., 2009; Power and Kociuba, 2011a, 2011b). Thus, there is low confidence in projected near-
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term changes to the Walker circulation. It is very likely that there will be decades in which the Walker 
circulation strengthens and weakens due to internal variability through the mid-century as the externally 
forced change is small compared to internally-generated decadal variability. 
 
[INSERT FIGURE 11.15 HERE] 
Figure 11.15: CMIP5 multi-model ensemble mean of projected changes [m/s] in zonal (west-to-east) wind at 850hPa 
for 2016–2035 relative to 1986–2005 under RCP4.5. The number of CMIP5 models used is indicated in the upper-right 
corner. Hatching and stippling as in Figure 11.10. 
 
[INSERT FIGURE 11.16 HERE] 
Figure 11.16: Projected changes in the annual-averaged poleward edge of the Hadley Circulation (horizontal axis) and 
sub-tropical dry zones (vertical axis) based on 15 AOGCMs from the CMIP5 (Taylor et al., 2012) multi-model 
ensemble, under 21st century RCP4.5. Orange symbols show the change in the northern edge of the Hadley 
Circulation/dry zones, while blue symbols show the change in the southern edge of the Hadley Circulation/dry zones. 
Open circles indicate the multi-model average, while horizontal and vertical colored lines indicate the ±1-standard 
deviation range for internal climate variability estimated from each model. Values referenced to the 1986–2005 
climatology. Figure based on the methodology of (Lu et al., 2007). 
 
11.3.2.5 Atmospheric Extremes 
 
Extreme events in a changing climate are the subject of Chapter 3 (Seneviratne et al., 2012) of the IPCC 
Special Report on Extremes (SREX). This previous IPCC Chapter provides an assessment of more than 1000 
studies. Here the focus is on near-term aspects and provide an assessment of more recent studies. 
 
11.3.2.5.1 Temperature extremes 
In the AR4 (Meehl et al., 2007b), cold episodes were projected to decrease significantly in a future warmer 
climate and it was considered very likely that heat waves would be more intense, more frequent and last 
longer towards the end of the 21st century. These conclusions have generally been confirmed in subsequent 
studies addressing both global scales (Clark et al., 2010; Diffenbaugh and Scherer, 2011; Caesar and Lowe, 
2012; Orlowsky and Seneviratne, 2012; Sillmann et al., 2013); and regional scales (e.g., (Gutowski et al., 
2008; Alexander and Arblaster, 2009; Fischer and Schar, 2009; Marengo et al., 2009; Meehl et al., 2009a; 
Diffenbaugh and Ashfaq, 2010; Fischer and Schar, 2010; Cattiaux et al., 2012; Wang et al., 2012). In the 
SREX assessment it is concluded that increases in the number of warm days and nights and decreases in the 
number of cold days and nights are virtually certain on the global scale. 
 
None of the aforementioned studies specifically addressed the near term, but detection and attribution studies 
(see also Chapter 10) show that temperature extremes already increase in many regions consistent with 
climate change projections, and analyses of CMIP5 global projections show that this trend will continue and 
become more notable. The CMIP5 model ensemble exhibits a significant decrease in the frequency of cold 
nights, an increase in the frequency of warm days and nights, and an increase in the duration of warm spells 
(Sillmann et al., 2013). These changes are particularly evident in global mean projections (see Figure 11.17). 
The figure shows that for the next few decades—as discussed in the introduction to the current chapter—
these changes are remarkably insensitive to the emission scenario considered (Caesar and Lowe, 2012). 
 
[INSERT FIGURE 11.17 HERE] 
Figure 11.17: Global projections of the occurrence of (a) warm days (TX90p), (b) cold days (TX10p), and (c) 
precipitation amount from very wet days (R95p). Results are shown from CMIP5 for the RCP2.6, RCP4.5 and RCP8.5 
scenarios. Solid lines indicate the ensemble median and shading indicates the interquartile spread between individual 
projections (25th and 75th percentiles). The specific definitions of the indices shown are (a) percentage of days 
annually with daily maximum surface air temperature (Tmax) exceeding the 90th percentile of Tmax for 1961–1990, (b) 
percentage of days with Tmax below the 10th percentile, and (c) percentage change relative to 1986–2005 of the annual 
precipitation amount from daily events above the 95th percentile. From Sillmann et al. (2013). 
 
Near-term projections from GCM-RCM model chains (van der Linden and Mitchell, 2009) for Europe are 
shown in Figure 11.18, displaying near-term changes in mean and extreme temperature (left-hand panels) 
and precipitation (right-hand panels) relative to the control period 1986–2005. In terms of mean JJA 
temperatures (Figure 11.18a), projections show a warming of 0.6°C–1.5°C, with highest changes over the 
land portion of the Mediterranean. The north-south gradient in the projections is consistent with the AR4. 
Daytime extreme summer temperatures in southern and central Europe are projected to warm substantially 
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faster than mean temperatures (compare Figure 11.18a and 11.18b). This difference between changes in 
mean and extremes can be explained by increases in interannual and/or synoptic variability, or increases in 
diurnal temperature range (Gregory and Mitchell, 1995; Schar et al., 2004; Fischer and Schar, 2010; Hansen, 
2012; Quesada et al., 2012; Seneviratne et al., 2012). There is some evidence, however, that this effect is 
overestimated in some of the models (Fischer et al., 2012; Stegehuis et al., 2012), leading to a potential 
overestimation of the projected Mediterranean summer mean warming (Buser et al., 2009; Boberg and 
Christensen, 2012). With regard to near-term projections of record heat compared to record cold, (Meehl et 
al., 2009b) show, for one model, that over the U.S. the ratio of daily record high temperatures to daily record 
low temperatures could increase from an early 2000s value of roughly 2 to 1, to a mid-century value of about 
20 to 1. 
 
In terms of DJF temperatures (Figure 11.18c), projections show a warming of 0.3°C–1.8°C, with largest 
changes in the N-NE part of Europe. This characteristic pattern of changes tends to persist to the end of 
century (van der Linden and Mitchell, 2009). In contrast to JJA temperatures, daytime high-percentile (i.e., 
warm) winter temperatures are projected to warm slower than mean temperatures (compare Figure 11.18c 
and Figure 11.18d), while low-percentile (i.e., cold) winter temperatures warm faster than the mean. This 
behaviour is indicative of reductions in internal variability, which may be linked to changes in storm track 
activity, reductions in diurnal temperature range and changes in snow cover (e.g., Colle et al. (2013); Dutra 
et al. (2011). 
 
[INSERT FIGURE 11.18 HERE] 
Figure 11.18: European-scale projections from the ENSEMBLES regional climate modelling project for 2016–2035 
relative to 1986–2005, with top and bottom panels applicable to JJA and DJF, respectively. For temperature, projected 
changes (°C) are displayed in terms of ensemble mean changes of (a, c) mean seasonal surface temperature, and (b, d) 
the 90th percentile of daily maximum temperatures. For precipitation, projected changes (%) are displayed in terms of 
ensemble mean changes of (e, g) mean seasonal precipitation and (f, h) the 95th percentile of daily precipitation. The 
stippling in (e-h) highlights regions where 80% of the models agree in the sign of the change (for temperature all 
models agree on the sign of the change). The analysis includes the following 10 RCM-GCM simulation chains for the 
SRES A1B scenario (naming includes RCM group and GCM simulation): HadRM3Q0-HadCM3Q0, ETHZ-
HadCM3Q0, HadRM3Q3-HadCM3Q3, SMHI-HadCM3Q3, HadRM3Q16-HadCM3Q16, SMHI-BCM, DMI-
ARPEGE, KNMI-ECHAM5, MPI-ECHAM5, DMI-ECHAM5 (Rajczak et al. (2013). 
 
11.3.2.5.2 Heavy precipitation events 
For the 21st century, the AR4 and the SREX concluded that heavy precipitation events were likely to 
increase in many areas of the globe (IPCC, 2007). Since AR4, a larger number of additional studies has been 
published using global and regional climate models (Fowler et al., 2007; Gutowski et al., 2007; Sun et al., 
2007; Im et al., 2008; O'Gorman and Schneider, 2009; Xu et al., 2009; Hanel and Buishand, 2011; Heinrich 
and Gobiet, 2011; Meehl et al., 2012b). For the near term, CMIP5 global projections (Figure 11.17c) confirm 
a clear tendency for increases in heavy precipitation events in the global mean, but there are significant 
variations across regions (Sillmann et al., 2013). Past observations have also shown that interannual and 
decadal variability in mean and heavy precipitation are large, and are in addition strongly affected by 
internal variability (e.g., El Niño), volcanic forcing, and anthropogenic aerosol loads (see Section 2.3.1.2). In 
general models have difficulties in representing these variations, particularly in the tropics (see Section 
9.4.4.2). 
 
Simulations with regional climate models demonstrate that the response in terms of heavy precipitation 
events to anthropogenic climate change may become evident in some but not all regions in the near term. For 
instance, ENSEMBLES projections for Europe (see Figure 11.18e-h) confirm the previous IPCC results that 
changes in mean precipitation as well as heavy precipitation events are characterized by a pronounced north-
south gradient in the extratropics, especially in the winter season, with precipitation increases in the higher 
latitudes and decreases in the subtropics. While this pattern starts to emerge in the near term, the projected 
changes are statistically significant only in a fraction of the domain. The results appear are affected by both 
changes in water vapour content as induced by large-scale warming, and large-scale circulation changes. 
Figure 11.18e-h also shows that mid- and high-latitude projections for changes in DJF extremes and means 
are qualitatively similar in the near term, at least for the event size considered. 
 
Previous work reviewed in AR4 has established that extreme precipitation events may increase substantially 
stronger than mean precipitation amounts. More specifically, extreme events may increase with the 
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atmospheric water vapour content, i.e. up to the rate of the Clausius-Clapeyron (CC) relationship (e.g., 
(Allen and Ingram, 2002). More recent work suggests that increases beyond this threshold may occur for 
short-term events associated with thunderstorms (Lenderink and Van Meijgaard, 2008; Lenderink and 
Meijgaard, 2010) and tropical convection (O'Gorman, 2012). A number of studies showed strong 
dependencies on location and season, but confirm the existence of significant deviations from the CC scaling 
(e.g., (Lenderink et al., 2011; Mishra et al., 2012; Berg et al., 2013). Studies with cloud-resolving models 
generally support the existence of temperature-precipitation relations that are close to or above (up to about 
twice) the CC relation (Muller et al., 2011; Singleton and Toumi, 2012).  
 
11.3.2.5.3 Tropical cyclones 
The projected response of tropical cyclones (TCs) at the end of the 21st century is summarized in Section 
14.6.1 and the IPCC Special Report on Extremes (SREX) (Seneviratne et al., 2012). Relative to the number 
of studies focusing on projections of TC activity at the end of the 21st Century (Section 14.6.1; (Knutson et 
al., 2010; Seneviratne et al., 2012) there are fewer studies that have explored near-term projections of TC 
activity (Table 11.2); the North Atlantic (NA) stands out as the basin with most studies. In the NA, there are 
mixed projections for basin-wide TC frequency, suggesting significant decreases (Knutson et al., 2013) or 
non-significant changes (Villarini et al., 2011; Villarini and Vecchi, 2012). Multi-model mean projected NA 
TC frequency changes based on CMIP3 and CMIP5 over the first half of the 21st century were smaller than 
the overall uncertainty estimated from the CGCMs, with internal climate variability being a leading source 
of uncertainty through the mid-21st century (Villarini et al., 2011; Villarini and Vecchi, 2012). Therefore, 
based on the limited literature available, the conflicting mid-term projections in basins with more than one 
study, the large influence of internal variability, the lack of confidently detected/attributed changes in TC 
activity (Chapter 10), and the conflicting projections for basin-wide TC frequency even at the end of the 21st 
century (Chapter 14), there is currently low confidence in basin-scale and global projections of trends in 
tropical cyclone frequency to the mid-21st century. 
 
Exploring different hurricane intensity measures, two studies project near-term increases of NA hurricane 
intensity (Knutson et al., 2013; Villarini and Vecchi, 2013), driven in large part by projected reductions in 
NA tropospheric aerosols in CMIP5 future forcing scenarios. Studies project near-term increases in the 
frequency Category 4–5 TCs in the NA (Knutson et al., 2013) and South West Pacific (Leslie et al., 2007). 
Published studies agree in the sign of projected mid-century intensity change (intensification), but the only 
basin with more than one study exploring intensity is the NA. For the NA, an estimate of the timescale of 
emergence of projected changes in intense TC frequency exceed 60 years (Bender et al., 2010), although that 
estimate depends crucially on the amplitude of internal climate variations of intense hurricane frequency 
(e.g., (Emanuel, 2011), which remains poorly constrained at the moment. Therefore, there is low confidence 
in near-term TC intensity projections in all TC basins. 
 
Modes of climate variability that in the past have led to variations in the intensity, frequency and structure of 
tropical cyclones across the globe—such as the El Niño Southern Oscillation (e.g., (Zhang and Delworth, 
2006; Wang et al., 2007; Callaghan and Power, 2011); Chapter 14)—are very likely to continue influencing 
TC activity through the mid-21st century. Therefore, it is very likely that over the next few decades tropical 
cyclone frequency, intensity and spatial distribution globally, and in individual basins, will vary from year-
to-year and decade-to-decade 
 
 
Table 11.2: Summary of studies exploring near-term projections of tropical cyclone (TC) activity. First column lists the 
TC basin explored, the second column summarizes the changes in TC activity reported in each study, the third column 
presents notes on the methodology, and the fourth column provides a reference to the study. 
 
TC Basin 
Explored 

Projected Change in TC Activity Reported Notes Reference 

Global Reduced global, Northern Hemisphere and Southern 
Hemisphere frequency 2016–2035 relative to 1986–
2005. 

High-resolution atmospheric 
model forced by CMIP3 SRES 
A1B multi-model SST change 
2004–2099. 

Sugi and 
Yoshimura 
(2012)  

N.W. Pacific Over first half of 21st century: Reduced Activity over 
South China Sea, Increased Activity near subtropical 

Statistical downscale of five 
CMIP3 models under SRES A1B. 

Wang et al. 
(2011)  
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Asia 

N.W. Pacific Over 2001–2040, a decrease in TC frequency in the East 
China Sea, and a frequency decrease and increase in 
intensity of Yangze River Basin landfalling typhoons. 

Statistical downscaling of CGCM 
forced by CMIP3 SRES A1B 
scenario. 

Orlowsky 
and 
Seneviratne
(2012)   

S.W. Pacific Differences of 2000–2050 with 1970–2000. Negligible 
change in overall frequency. Significant (~15%) increase 
in number of Category 4–5 TCs 

Dynamical regional downscale of 
coupled AOGCM forced with 
IPCC IS92a increasing CO2 
scenario. 

Leslie et al. 
(2007)  

N. Atlantic Linear trend in TS Frequency 2001–2050: Ensemble-
mean non-significant decrease in TC frequency (-5%). 
Ensemble range of –50% to +30%. 

Statistical downscaling of CMIP3 
models under A1B scenario. 

Villarini et 
al. (2011) 

N. Atlantic TS Frequency averaged 2016–2035 minus 1986–2005: 
Ensemble-mean non-significant increase for RCP2.6 
(4%), non-significant decrease for RCP4.5 (–2%) and 
RCP8.5 (–1%). Ensemble range of –30% to 27% across 
all scenarios/models 

Statistical downscaling of CMIP5 
RCP2.6, RCP4.5 and RCP8.5 

Villarini 
and Vecchi 
(2012)  

N. Atlantic Power Dissipation Index averaged 2016–2035 minus 
1986–2005: Ensemble-mean significant increase for 
RCP2.6 (23%) and RCP8.5 (17%), non-significant 
increase for RCP4.5 (10%). Ensemble range of –43% to 
78% across all scenarios/models. 

Statistical downscaling of CMIP5 
RCP2.6, RCP4.5 and RCP4.5 

Villarini 
and Vecchi 
(2013)  

N. Atlantic Difference 2016–2035 minus 1986–2005 averages: 
Significant decrease (–20%) to overall TC and hurricane 
frequency. Significant increase (+45%) in number of 
Category 4–5 TCs. Significant increase in precipitation 
of hurricanes (11%) and tropical storms (18%). 

Double dynamical refinement of 
CMIP5 RCP4.5 multi-model 
ensemble projections. 

Knutson et 
al. (2013) 

 
 
11.3.3 Near-Term Projected Changes in the Ocean 
 
11.3.3.1 Temperature 
 
Globally-averaged surface and near-surface ocean temperatures are projected by AOGCMs to warm over the 
early 21st century, in response to both present day atmospheric concentrations of greenhouse gases 
(‘committed warming’; e.g., Meehl et al., 2006) and projected future changes in radiative forcing (Figure 
11.19). Globally-averaged SST shows substantial year-to-year and decade-to-decade variability (e.g., 
Knutson et al., 2006; Meehl et al., 2011), whereas the variability of depth-averaged ocean temperatures is 
much less (e.g., Meehl et al., 2011; Palmer et al., 2011). The rate at which globally-averaged surface and 
depth-averaged temperatures rise in response to a given scenario for radiative forcing shows a considerable 
spread between models (an example of response uncertainty, see Section 11.2), due to differences in climate 
sensitivity and ocean heat uptake (e.g., Gregory and Forster, 2008). In the CMIP5 models under all RCP 
forcing scenarios, globally averaged SSTs are projected to be warmer over the near term relative to 1986–
2005 (Figure 11.20). 
 
A key uncertainty in the future evolution of globally averaged oceanic temperature are possible future large 
volcanic eruptions, which could impact the radiative balance of the planet for 2–3 years after their eruption 
and act to reduce oceanic temperature for decades into the future (Delworth et al., 2005; Stenchikov et al., 
2009; Gregory, 2010). An estimate using the GFDL-CM2.1 coupled AOGCM (Stenchikov et al., 2009) 
suggests that a single Tambora (1815)-like volcano could erase the projected global ocean depth-averaged 
temperature increase for many years to a decade. A Pinatubo (1991)-like volcano could erase the projected 
increase for 2–10 years. See Section 11.3.6 for further discussion. 
 
In the absence of multiple major volcanic eruptions (see Section 11.3.6.2), it is very likely that globally-
averaged surface and depth-averaged temperatures averaged 2016–2035 will be warmer than those averaged 
over 1986–2005. 
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There are regional variations in the projected amplitude of ocean temperature change (Figure 11.20) are 
influenced by ocean circulation as well as surface heating (Timmermann et al., 2007; Vecchi and Soden, 
2007; DiNezio et al., 2009; Yin et al., 2009; Xie et al., 2010; Yin et al., 2010), including changes in 
tropospheric aerosol concentrations (e.g., (Booth et al., 2012; Villarini and Vecchi, 2012). Inter-decadal 
variability of upper ocean temperatures is larger in mid-latitudes, particularly in the Northern Hemisphere, 
than in the tropics. A consequence of this contrast is that it will take longer in the mid-latitudes than in the 
tropics for the anthropogenic warming signal to emerge from the noise of internal variability (Wang et al., 
2010). 
 
Projected changes to thermal structure of the tropical Indo-Pacific are strongly dependent on future 
behaviour of the Walker circulation (Vecchi and Soden, 2007; DiNezio et al., 2009; Timmermann et al., 
2010), in addition to changes in heat transport and changes in surface heat fluxes. It is likely that internal 
climate variability will be a dominant contributor to changes in the depth and tilt of the equatorial 
thermocline, and the strength of the east-west gradient of SST across the Pacific through the mid-21st 
century, thus it is likely there will be multi-year periods with increases or decreases in these measures. 
 
[INSERT FIGURE 11.19 HERE] 
Figure 11.19: Projected changes in annual-averaged, globally-averaged, surface ocean temperature based on twelve 
AOGCMs from the CMIP5 (Meehl et al., 2007b) multi-model ensemble, under 21st century Scenarios RCP2.6, 
RCP4.5, RCP6.0 and RCP8.5. Shading indicates the 90% range of projected annual global-mean surface temperature 
anomalies. Anomalies computed against the 1986–2005 average from the historical simulations of each model. 
 
[INSERT FIGURE 11.20 HERE] 
Figure 11.20: CMIP5 multi-model ensemble mean of projected changes in sea surface temperature (left panel; °C) and 
sea surface salinity (right panel; practical salinity units) for 2016–2035 relative to 1986–2005 under RCP4.5. The 
number of CMIP5 models used is indicated in the upper-right corner. Hatching and stippling as in Figure11.10. 
  
11.3.3.2 Salinity 
 
Changes in sea surface salinity are expected in response to changes in precipitation, evaporation and runoff 
(see Section 11.3.2.3), as well as ocean circulation; in general (but not in every region), salty regions are 
expected to become saltier and fresh regions fresher (e.g., (Durack et al., 2012; Terray et al., 2012); Figure 
11.20). As discussed in Chapter 10 (Section 10.4.2), observation-based and attribution studies have found 
some evidence of an emerging anthropogenic signal in salinity change (Section 10.4.2), in particular 
increases in surface salinity in the subtropical North Atlantic, and decreases in the west Pacific warm pool 
region (Stott et al., 2008; Cravatte et al., 2009; Durack and Wijffels, 2010; Durack et al., 2012; Pierce et al., 
2012; Terray et al., 2012). Models generally predict increases in salinity in the tropical and (especially) 
subtropical Atlantic, and decreases in the western tropical Pacific over the next few decades (Figure 11.20) 
(Durack et al., 2012; Terray et al., 2012). 
 
Projected near-term increases in fresh water flux into the Arctic Ocean produce a fresher surface layer and 
increased transport of fresh water into the North Atlantic (Holland et al., 2006; Holland et al., 2007; Vavrus 
et al., 2012). Such contributions to decreased density of the ocean surface layer in the North Atlantic could 
act to reduce deep ocean convection there and contribute to a near-term reduction of strength of Atlantic 
Meridional Ocean Circulation. However, the strength of the AMOC can also be modulated by changes in 
temperature, such as those from changing radiative forcing (Delworth and Dixon, 2006). 
 
11.3.3.3 Circulation 
 
As discussed in previous assessment reports, the AMOC is generally projected to weaken over the next 
century in response to increase in atmospheric GHG. However, the rate and magnitude of weakening is very 
uncertain. Response uncertainty is likely to be a dominant contribution in the near term, but the influence of 
anthropogenic aerosols and natural radiative forcings (solar, volcanic) cannot be neglected, and could be as 
important as the influence of greenhouse gases (e.g., Delworth and Dixon, 2006; Stenchikov et al., 2009). 
For example, the rate of weakening of the AMOC in two models with different climate sensitivities is quite 
different, with the less sensitive model (CCSM4) showing less weakening and a more rapid recovery than 
the more sensitive model (CESM1/CAM5; (Meehl et al., 2013c). In addition, the natural variability of the 
AMOC on decadal timescales is poorly known and poorly understood, and could dominate any 
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anthropogenic response in the near term (Drijfhout and Hazeleger, 2007). The AMOC is known to play an 
important role in the decadal variability of the North Atlantic Ocean, but climate models show large 
differences in their simulation of both the amplitude and spectrum of AMOC variability (e.g., Bryan et al., 
2006; Msadek et al., 2010). In some AOGCMs changes in southern hemisphere surface winds influence the 
evolution of the AMOC on timescales of many decades (Delworth and Zeng, 2008), so the delayed response 
to southern hemisphere wind changes, driven by the historical reduction in stratospheric ozone along with its 
projected recovery, could be an additional confounding issue (Section 11.3.2.3). Overall, it is likely that there 
will be some decline in the AMOC by 2050, but decades during which the AMOC increases are also to be 
expected. There is low confidence in projections of when an anthropogenic influence on the AMOC might be 
detected (Baehr et al., 2008; Roberts and Palmer, 2012). 
 
Projected changes to oceanic circulation in the Indo-Pacific are strongly dependent on future response of the 
Walker circulation (Vecchi and Soden, 2007; DiNezio et al., 2009), the near-term projected weakening of 
which is smaller than the expected variability on timescales of decades to years (Section 11.3.2.4.3). 
Therefore is medium confidence in a weakening of equatorial Pacific circulation, including equatorial 
upwelling and the shallow subtropical overturning in the Pacific, and the Indonesian Throughflow over the 
coming decades. 
 
11.3.4 Near-Term Projected Changes in the Cryosphere 
 
This section assesses projected near-term changes of elements of the cryosphere. These consist of sea ice, 
snow cover and near-surface permafrost (frozen ground), changes to the Arctic Ocean, and possible abrupt 
changes involving the cryosphere. Glaciers and ice sheets are addressed in Chapter 13. Here near-term 
changes in the geographical coverage of sea ice, snow cover and near-surface permafrost are assessed. 
Trends in many observed quantities seem to show evidence of anthropogenic forcing, however, for many of 
these, the trend exists alongside considerable interannual and decadal variability that complicates our ability 
to make specific/precise short-term projections, and confounds the emergence of a forced signal above the 
noise.  
 
11.3.4.1 Sea Ice 
 
Though most of the CMIP5 models project a nearly ice-free Arctic (sea ice extent less than 1 × 106 km2 for 
at least five years) at the end of summer by 2100 in the RCP8.5 scenario (see Section 12.4.6.1), some show 
large changes in the near term as well. Some previous models project an ice-free summer period in the 
Arctic Ocean by 2040 (Holland et al., 2006), and even as early as the late 2030s using a criterion of 80% sea 
ice area loss (e.g., Zhang, 2010). By scaling six CMIP3 models to recent observed September sea ice 
changes, a nearly ice free Arctic in September is projected to occur by 2037, reaching the first quartile of the 
distribution for timing of September sea ice loss by 2028 (Wang and Overland, 2009). However, a number of 
models that have fairly thick Arctic sea ice produce a slower near-term decrease in sea ice extent compared 
to observations (Stroeve et al., 2007). Based on a linear extrapolation into the future of the recent sea ice 
volume trend from a hindcast simulation conducted with a regional model of the Arctic sea ice‒ocean 
system, (Maslowski et al., 2012) projected that it would take only until ~2016 to reach a nearly ice-free 
Arctic Ocean in summer. However, such an approach neglects not only the effect of year-to-year or longer-
term variability (Overland and Wang, 2013) but also ignores the negative feedbacks that can occur when the 
sea ice cover becomes thin (Notz, 2009). Mahlstein and Knutti (2012)estimated the annual mean global 
surface warming threshold for nearly ice-free Arctic conditions in September to be ~2°C above present 
derived from both CMIP3 models and observations.  
 
An analysis of CMIP3 model simulations indicates that for near-term predictions the dominant factor for 
decreasing sea ice is increased ice melt, and reductions in ice growth play a secondary role (Holland et al., 
2010). Arctic sea ice has larger volume loss when there is thicker ice initially across the CMIP3 models, with 
a projected accumulated mass loss of about 0.5 m by 2020, and roughly 1.0 m by 2050 with considerable 
model spread (Holland et al., 2010). The CMIP3 models tended to under-estimate the observed rapid decline 
of summer Arctic sea ice during the satellite era, but these recent trends are more accurately simulated in the 
CMIP5 models (see Section 12.4.6.1). For CMIP3 models, results indicate that the changes in Arctic sea ice 
mass budget over the 21st century are related to the late 20th century mean sea ice thickness distribution 
(Holland et al., 2010), average sea ice thickness (Bitz, 2008; Hodson et al., 2012) fraction of thin ice cover 
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(Boe et al., 2009) and oceanic heat transport to the Arctic (Mahlstein et al., 2011). Acceleration of sea ice 
drift observed over the last 3 decades, underestimated in CMIP3 projections (Rampal et al., 2011) and 
presence of fossil-fuel and biofuel soot in Arctic environment (Jacobson, 2010) could also contribute to ice-
free late summer conditions over the Arctic in the near term. Details on the transition to ice-free summer 
over Arctic regardless the particular aspects of near term projections are presented in Chapter 12 (Sections 
12.4.6.1 and 12.5.5.7). 
 
The discussion in Section 12.4.6.1 makes the case for assessing near-term projections of Arctic sea ice by 
weighting/recalibrating the models based on their present-day Arctic sea ice simulations, with a credible 
underlying physical basis in order to increase confidence in the results, and accounting for the potentially 
large imprint of natural variability on both observations and model simulations (see Section 9.8.3). A 
subselection of a set of CMIP5 models that fits those criteria, following the methodology proposed by 
(Massonnet et al., 2012) is applied in Chapter 12 (Section 12.4.6.1) to the full set of models that provided the 
CMIP5 database with sea ice output. Among the five selected models, four project a nearly ice-free Arctic 
Ocean in September (sea ice extent less than 1 × 106 km2 for at least five years) before 2050 for RCP8.5, the 
earliest and latest years of near disappearance of the sea ice pack being ~2040 and ~2060, respectively. The 
potential irreversibility of the Arctic sea ice loss and the possibility of an abrupt transition toward an ice-free 
Arctic Ocean are discussed in Section 12.5.5.7. 
 
In light of all these results and others discussed in greater detail in Section 12.4.6.1, it is very likely that the 
Arctic sea ice cover will continue to shrink and thin all year round during the 21st century as the annual 
mean global surface temperature rises. It is also likely that the Arctic Ocean will become nearly ice-free in 
September before the middle of the century for high greenhouse gas emissions such as those corresponding 
to RCP8.5 (medium confidence). 
 
In early 21st century simulations, Antarctic sea ice cover is projected to decrease in the CMIP5 models, 
though CMIP3 and CMIP5 models simulate recent decreases in Antarctic sea ice extent compared to slight 
increases in the observations (Chapter 12, Section 12.4.6.1). However, there is the possibility that melting of 
the Antarctic ice sheet could be changing the vertical ocean temperature stratification around Antarctica and 
encourage sea ice growth (Bintanja et al., 2013). This and other evidence discussed in Section 12.4.6.1 leads 
to the assessment that there is low confidence in Antarctic sea ice model projections that show near-term 
decreases of sea ice cover because of the wide range of model responses and the inability of almost all of the 
models to reproduce the mean seasonal cycle, interannual variability, and overall increase of the Antarctic 
sea ice areal coverage observed during the satellite era (see Section 9.4.3). 
 
11.3.4.2 Snow Cover 
 
Decreases of snow cover extent (SCE, defined over ice-free land areas) are strongly connected to a 
shortening of seasonal snow cover duration (Brown and Mote, 2009) and are related to both precipitation 
and temperature changes (see Section 12.4.6.2). This has implications for snow on sea ice where loss of sea 
ice area in autumn delays snowfall accumulation, with CMIP5 multi-model mean values of snow depth in 
April north of 70°N reduced from about 28 cm to roughly 18 cm for the 2031–2050 period compared to the 
1981–2000 average (Hezel et al., 2012). The snow accumulation season by mid-century in one model is 
projected to begin later in autumn with the melt season initiated earlier in the spring (Lawrence and Slater, 
2010). As discussed in greater detail in Section 12.4.6.2, projected increases in snowfall across much of the 
northern high latitudes act to increase snow amounts, but warming reduces the fraction of precipitation that 
falls as snow. Additionally, the reduction of Arctic sea ice also provides an increased moisture source for 
snowfall (Liu et al., 2012). Whether the average SCE decreases or increases by mid-century depends on the 
balance between these competing factors. The dividing line where models transition from simulating 
increasing or decreasing maximum snow water equivalent roughly coincides with the –20°C isotherm in the 
mid-20th century November to March mean surface air temperature (Raisanen, 2008). The projected change 
of SCE over some regions is inconsistent with that of extreme snowfall, a major contributor to SCE. For 
instance, SCE is projected to decrease over northern China by the mid-21st century (Shi et al., 2011), while 
the extreme snowfall events over the region are projected to increase (Sun et al., 2010). 
 
Time series of projected changes in relative SCE (for Northern Hemisphere ice-free land areas) are shown in 
Figure 12.32. Multi-model averages from the CMIP5 archive (Brutel-Vuilmet et al., 2013) show percentage 
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decreases of Northern Hemisphere SCE ± one standard deviation for the 2016–2035 time period for a March 
to April average using a 15% extent threshold for the four RCP scenarios as follows: RCP2.6: –5.2% ± 1.9% 
(21 models); RCP4.5: –5.3% ± 1.5% (24 models); RCP6.0: –4.5% ± 1.2% (16 models); RCP8.5: –6.0% ± 
2.0% (24 models).  
 
11.3.4.3 Near Surface Permafrost  
 
Virtually all near-term projections indicate a substantial amount of near-surface permafrost degradation 
(typically taking place in the upper 2–3 m, see Callaghan et al. (2011) and see glossary for detailed 
definition), and thaw depth deepening over much of the permafrost area (Sushama et al., 2006; Lawrence et 
al., 2008); (Guo and Wang, 2012). As discussed in more detail in Section 12.4.6.2, these projections have 
increased credibility compared to the previous generation of models assessed in the AR4 because current 
climate models represent permafrost more accurately (Alexeev et al., 2007; Nicolsky et al., 2007; Lawrence 
et al., 2008). The reduction in annual mean near-surface permafrost area for the 2016–2035 time period 
compared to the 1986–2005 reference period for the CMIP5 models (Slater and Lawrence, 2013) for the 
Northern Hemisphere for the four RCP scenarios is 21% ± 5% (RCP2.6), 18% ± 6% (RCP4.5), 18% ± 3% 
(RCP6.0), and 20% ± 5% (RCP8.5). 
 
11.3.5 Projections for Atmospheric Composition and Air Quality to 2100 
 
The future evolution of atmospheric composition is determined by the chemical-physical processes in the 
atmosphere, forced primarily by anthropogenic and natural emissions and by interactions with the biosphere 
and ocean (Chapters 2, 6, 7, 8, 12). Twenty-first century projections of the chemically reactive greenhouse 
gases, including CH4, N2O and O3, as well as aerosols are assessed here (Section 11.3.5.1). Future air 
pollution, specifically ground-level ozone and PM2.5 (particulate matter with a diameter of less than 2.5 
micrometers, a measure of aerosol concentration) is also assessed here (Section 11.3.5.2). The impact of 
changes in natural emissions and deposition through altered land-use (Heald et al., 2008; Chen et al., 2009a; 
Cook et al., 2009; Wu et al., 2012) and production of food or biofuels (Chapter 6) on atmospheric 
composition and air quality are not assessed here. Projected CO2 abundances are discussed in Chapters 6 and 
12. 
 
Projections for the 21st century are based predominantly on the CMIP5 (Climate Model Intercomparison 
Project 5) models that included atmospheric chemistry and the related ACCMIP (Atmospheric Chemistry 
and Climate Model Intercomparison Project) models, driven by the RCP emission and climate scenarios. 
These and the earlier SRES scenarios include only direct anthropogenic emissions. Natural emissions may 
also change with biosphere feedbacks in response to climate or land use change (Chapters 6, 8). Emphasis is 
placed on evaluating the 21st-century RCP scenarios from emissions to abundance, summarized in tables in 
Annex II. For the well-mixed GHGs, the effective RF (ERF) in both RCP and SRES scenarios increases 
similarly before 2040 with little spread (±16% in ERF, see Tables AII.6.1–AII.6.10), but by 2050 the 
RCP2.6 scenario diverges, falling well below the envelope containing both the SRES and other RCP 
scenarios.  
 
National and regional regulations implemented on emissions contributing to ground-level ozone and PM2.5 
pollution influence global atmospheric chemistry and climate (NRC, 2009; HTAP, 2010a), as was 
recognized in the TAR (Jacob et al., 1993; Penner et al., 1993; Johnson et al., 1999; Prather et al., 2001). 
Since ozone and aerosols are radiatively active species (Chapters 7, 8) and many of their precursors serve as 
indirect greenhouse gases (e.g., NOx, CO, NMVOC) by changing the atmospheric oxidative capacity, and 
thereby the lifetimes and abundances of CH4, HFCs, and tropospheric O3 (Chapter 8), their evolution can 
influence near-term climate both regionally and globally (Section 11.3.6.1; FAQ 8.2). The RCP and SRES 
scenarios differ greatly in terms of the short-lived air pollutants and aerosol climate forcing. The CMIP3 
climate simulations driven by the SRES scenarios projected a wide range of future air pollutant trajectories, 
including unconstrained growth that resulted in very large tropospheric O3 increases (Prather et al., 2003). 
Subsequently, the near-term projections of current legislation (CLE) and maximum feasible reductions 
(MFR) emissions illustrated the impacts of air pollution control strategies on air quality, global atmospheric 
chemistry, and near-term climate (Dentener et al., 2005; Dentener et al., 2006; Stevenson et al., 2006). The 
RCP scenarios applied in the CMIP5 climate models all assume a continuation of current trends in air 
pollution policies (van Vuuren et al., 2011) and thus do not cover the range of future pollutant emissions 
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found in the literature, specifically those with higher pollutant emissions (Dentener et al., 2005; Kloster et 
al., 2008; Pozzer et al., 2012), see Chapter 8.  
 
The new RCP emissions are compared to the older SRES and other published emission scenarios in Annex II 
(Tables AII.2.1–AII.2.22) and Figures 8.2 and 8.SM.1. By 2030 the RCP aerosol and ozone precursor 
emissions are smaller than SRES by factors of 1.2 to 3. For these short-lived air pollutants, the spread across 
RCPs by 2030 is much smaller than the range between the CLE and MFR scenarios: ±12% vs. ±31% for 
nitrogen oxides; ±17% vs. ±60% for sulphate; ±5% vs. ±11% for carbon monoxide. Black carbon aerosol 
emissions also vary little across the RCPs: ±4% range in 2030; ±15% in 2100. Most of this spread is due to 
uncertain projections for the rapidly industrializing nations. From 2000–2030, SO2 emissions decline in the 
RCPs by –15% to –8% per decade, within the range of the MFR and CLE scenarios (–23% to +2% per 
decade), but far below the SRES range (+4% to +21% per decade). Evaluation of recent trends in SO2 
emissions shows a trend similar to the near-term RCP projections (Smith et al., 2011; Klimont et al., 2013), 
but independent estimates for recent trends in other aerosol species are not available. The RCP trend in 
nitrogen oxides emissions (–5% to +2% per decade) is likewise within the CLE-MFR range, but far below 
the SRES trends (+10% to +30% per decade). For OC and BC emissions, the RCP trend lies between the 
SRES B1/A2 range. A simple sum of the main four aerosol emissions (N, S, OC, BC, Tables AII.18.21 and 
AII.18.22) in the SRES vs. RCP scenarios indicates that the CMIP3 simulations driven by the SRES 
scenarios have about 40% more aerosols in 2000 than the CMIP5 simulations driven by the RCP scenarios. 
On average, these aerosols increase by 9% per decade in the SRES scenarios but decrease by 5% per decade 
in the RCP scenarios over the near term. By 2030, the CMIP3 models thus include up to three times more 
anthropogenic aerosols under the SRES scenarios than the CMIP5 models driven by the RCP scenarios (high 
confidence). 
 
11.3.5.1 Reactive Greenhouse Gases and Aerosols 
 
The IPCC has assessed previous emission-based scenarios for future greenhouse gases and aerosols in the 
SAR (IS92) and TAR/AR4 (SRES). The new RCP scenarios are different in that they embed a simple, 
parametric model of atmospheric chemistry and biogeochemistry that maps emissions onto atmospheric 
abundances (the “concentration pathways”) (Lamarque et al., 2011; Meinshausen et al., 2011b; Meinshausen 
et al., 2011a; van Vuuren et al., 2011). As an integrated product, the RCP-prescribed emissions, abundances 
and radiative forcing used in the CMIP5 model ensembles do not reflect the current best understanding of 
natural and anthropogenic emissions, atmospheric chemistry and biogeochemistry, and radiative forcing of 
climate (Chapters 2, 6, 8) (see e.g., Dlugokencky et al., 2011; Prather et al., 2012; Lamarque et al., 2013; 
Stevenson et al., 2013; Voulgarakis et al., 2013; Young et al., 2013). Rather, the best estimates of 
atmospheric abundances and associated radiative forcing include a more complete atmospheric chemistry 
description and a fuller set of uncertainties than considered in the RCPs provided to the CMIP5 models. 
While this widens the range of climate forcing for each individual scenario, this uncertainty generally 
remains smaller than the range across the four RCP scenarios.  
 
11.3.5.1.1 CH4, N2O, and the fluorinated F-gases 
Kyoto greenhouse gas abundances projected to year 2100 are given in Annex II (AII.4.1–AII.4.15) as both 
RCP published values (Meinshausen et al., 2011b) and derived from the RCP anthropogenic emissions 
pathways. The latter includes current best estimates of atmospheric chemistry and natural sources, with 
uncertainties (denoted RCP&). Emissions of CH4 and N2O, primarily from the agriculture, forestry and other 
land use sectors (AFOLU) are uncertain, typically by 25% or more (Prather et al., 2009; NRC, 2010). 
Following the method of (Prather et al., 2012) a best estimate and uncertainty range for the year 2011 
anthropogenic and natural emissions of CH4 and N2O are derived using updated AR5 values (see Chapters 2, 
5, 6). The re-scaled RCP& anthropogenic-only emissions of CH4 and N2O are given in Tables AII.2.2 and 
AII.2.3 and differ from the published RCPs by a single scale factor for each species. An uncertainty range 
for 2011 values (likely, ±1 standard deviation in %, based on (Prather et al., 2012) is applied to all 
subsequent years. Abundances are then integrated using these rescaled RCP& anthropogenic emissions, the 
best estimate for natural emissions, and a model projecting changes in tropospheric OH (see Holmes et al., 
2013; for details). Similar scaling to match current observational constraints (harmonization) was done for 
the SRES emissions (Prather et al., 2001) and the RCPs (Meinshausen et al., 2011b). However, these earlier 
harmonizations used older values for lifetimes and natural sources, and did not provide estimates of 
uncertainty. 
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Combining CH4 observations, lifetime estimates for present day, the ACCMIP studies, plus estimated limits 
on changing natural sources, gives a year 2011 total anthropogenic CH4 emission of 354 ± 45 Tg-CH4 yr–1 
(Montzka et al., 2011; Prather et al., 2012) (Chapters 2, 6, 8). The RCP total emission lies within 10% of this 
value, and thus the scaling factor between the RCP& and RCP total emission is small (Table AII.2.2). 
Projection of the tropospheric OH lifetime of CH4 (AII.5.8) is based on the ACCMIP simulations of the 
RCPs for 2100 time slice simulations (Montzka et al., 2011; Prather et al., 2012), other modelling studies 
(Stevenson et al., 2006; John et al., 2012) and multi-model sensitivity analyses of key factors (Holmes et al., 
2013) that includes uncertainties in emissions from agricultural, forest, and land use sources, in atmospheric 
lifetimes, and in chemical feedbacks and loss. Lifetimes, and thus future CH4 abundances, decrease slowly 
under RCP2.6 and RCP4.5, remain almost constant under RCP6.0, and increase slowly under RCP8.5. 
Future changes in natural sources of CH4 due to land-use and climate change are included in a few CMIP5 
models and may alter future CH4 abundances (Chapter 6), but there is limited evidence, and thus these 
changes are not included in the RCP& projections.  
 
The resulting best estimates of total CH4 anthropogenic emissions and abundances (RCP&) are compared 
with RCP values in Figure 11.21. For RCP2.6, the CH4 abundance is projected to decline continuously over 
the century by about 30%; whereas in RCP 4.5 and 6.0 it peaks mid-century and then declines to below the 
year 2011 abundance by the end of the century. Throughout the century, the uncertainty in CH4 abundance 
for an individual scenario is less than range from RCP2.6 to RCP8.5. For example, by year 2020 the spread 
in CH4 abundance across the RCPs is already large, 1720 to 1920 ppb, with uncertainty in each scenario 
estimated at only ±20 ppb. The likely range for RCP& CH4 is 30% wider than that in the RCP CH4 
abundances used to force the CMIP5 models (Figure 11.21): by year 2100 the likely range of RCP8.5& CH4 
abundance extends 520 ppb above the single-valued RCP8.5 CH4 abundance, and RCP2.6& CH4 extends 230 
ppb below RCP2.6 CH4. 
 
[INSERT FIGURE 11.21 HERE] 
Figure 11.21: Projections for CH4 (a) anthropogenic emissions (Mt CH4 yr–1) and (b) atmospheric abundances (ppb) for 
the four RCP scenarios (2010–2100). Natural emissions in 2010 are estimated to be 202 ± 35 Mt CH4 yr–1 (see Chapter 
8). The thick solid lines show the published RCP2.6 (light blue), RCP4.5 (dark blue), RCP6.0 (orange), and RCP8.5 
(red) values. Thin lines with markers show values from this assessment (denoted as RCPn.n&, following methods of 
(Prather et al., 2012; Holmes et al., 2013): red plus, RCP8.5; orange square, RCP6.0; light blue circle, RCP4.5; dark 
blue asterisk, RCP2.6. The shaded region shows the likely (68% confidence) range from the Monte Carlo calculations 
that consider uncertainties, including in current anthropogenic emissions. 
 
Substantial effort has gone into identifying and quantifying individual sources of N2O (see Chapter 6) but 
less into evaluating its lifetime and chemical feedbacks. Recent multi-model, chemistry-climate studies 
(CCMVal) project a more vigorous stratospheric overturning by 2100 that is expected to shorten the N2O 
lifetime (Oman et al., 2010; Strahan et al., 2011), but no evaluation of the lifetime is reported. Here we 
combine observations of N2O (pre-industrial, present, and present trends, Chapter 2), with two modern 
studies of the lifetime (Hsu and Prather, 2010; Fleming et al., 2011), and a Monte Carlo method (Prather et 
al., 2012) to estimate a year 2011 total anthropogenic emission of 6.7 ± 1.3 Tg–N(N2O) yr–1 (Table AII.2.3). 
All RCP N2O (anthropogenic) emissions are reduced by 20% so that year 2011 values are consistent with an 
observationally constrained budget using a longer lifetime than adopted by the RCPs (Table AII.2.3). The 
N2O lifetime (Table AII.5.9) is projected to decrease by 2–4% by year 2100, due to changing circulation and 
chemistry in the stratosphere (Fleming et al., 2011) and to the negative chemical feedback on its own 
lifetime (Prather and Hsu, 2010). In the near term, the spread in N2O across RCP&s is small: 330–332 ± 4 
ppb in year 2020; 346–365 ± 11 ppb in year 2050. By year 2100, the range of best-estimate N2O 
concentrations across the RCP&s (354–425 ppb) is 20% smaller than that across the RCPs (344–435 ppb), 
but the likely range in RCP&s encompasses the RCP range.  
 
Recent measurements show some discrepancies with bottom-up inventories of the industrially produced, 
synthetic fluorinated (F) gases (AII.2.4–AII.2.15). European HFC-23 emissions are greatly under-reported 
(Keller et al., 2011) while HFC-125 and 152a are roughly consistent with emissions inventories (Brunner et 
al., 2012). Globally, HFC-365mfc and HFC-245fa emissions are overestimated (Vollmer et al., 2011) while 
SF6 appears to be under-reported (Levin et al., 2010). For HFC-134a, combining current measurements and 
lifetimes (Table 2.1, Chapter 8; (World Meteorological Organization (WMO), 2010; Prather et al., 2012) 
gives an estimate of 2010 emissions (~150 Gg yr–1) that is consistent with the RCP range (139–153 Gg yr–1). 
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Without clear guidance on how to correct or place uncertainty on the RCP F-gas emissions, the RCP 
emissions are reported without uncertainty estimates in Annex II Tables AII.2.4–AII.2.15. For the very long-
lived SF6 and perfluorocarbons (CF4, C2F6, C6F10) uncertainty in lifetimes does not significantly affect the 
projected abundances over the 21st century (AII.4.4–AII.4.7). Projected HFC abundances depend on the 
changes in tropospheric OH, which determines their atmospheric lifetime (Chapter 8). The relative change in 
OH, as indicated by the projected OH-lifetime of CH4 (AII.5.8), is used to project HFCs including 
uncertainties (likely range) (AII.4.8–AII.4.15) (Prather et al., 2012).  
 
Scenarios for the ozone-depleting GHG under control of the Montreal Protocol (CFCs, HCFCs, halons in 
AII.4.16) follow scenario A1 of the 2010 WMO Ozone Assessment ((World Meteorological Organization 
(WMO), 2010), Table 5-A3). All CFC abundances decline throughout the century, but some HCFC 
abundances increase to 2030 before their phase-out and decline. The summed ERF of all these F-gases is 
approximately constant (0.35–0.39 W m–2) up to year 2040 for all RCPs but declines thereafter. In RCP8.5, 
the drop in ERF from the Montreal Protocol gases is nearly made up by the growth in HFCs (Tables AII.6.4–
AII.6.6, Chapter 8). 
 
11.3.5.1.2 Tropospheric and stratospheric O3 
Projected O3 changes are broken into tropospheric and stratospheric columns (DU, Dobson Unit, see AII.5.1 
and AII.5.2) because each has different driving factors and RF efficiencies (Chapter 8). Tropospheric O3 
changes are driven by anthropogenic emissions of CH4, NOx, CO, NMVOC (AII.2.2.16– AII.2.2.18) and are 
projected to follow these trends over the next few decades (e.g., decreasing in all RCPs by 2100 as global 
NOx declines, but increasing in RCP8.5 due to CH4 increases despite falling NOx emissions). Higher 
tropospheric temperatures and humidity drive a decline in tropospheric O3, but stratospheric O3 recovery and 
increased stratosphere-troposphere exchange can counter that (Shindell et al., 2006; Unger et al., 2006b; 
Bauer et al., 2007; Zeng et al., 2008; Zeng et al., 2010; Kawase et al., 2011; Lamarque et al., 2011). The 
latter effect is difficult to quantify but it is included in some of the ACCMIP and CMIP5 models used to 
project tropospheric O3. Changes in natural emissions of NOx, particularly soil and lightning NOx, and 
biogenic NMVOC may also alter tropospheric O3 abundances (Wild, 2007; Wu et al., 2007). However, 
global estimates of their change with climate (e.g., (Kesik et al., 2006; Monson et al., 2007; Butterbach-Bahl 
et al., 2009; Price, 2013) remain highly uncertain.  
 
Best estimates for projected tropospheric O3 change following the RCP scenarios (Table AII.5.2) are based 
on ACCMIP time slice simulations for 2030 and 2100 with chemistry-climate models (Young et al., 2013) 
and the CMIP5 simulations (Eyring et al., 2013b). There is high confidence in these results because similar 
estimates are obtained when projections are made using the response of tropospheric O3 to key forcing 
factors that vary across scenarios (Prather et al., 2001; Stevenson et al., 2006; Oman et al., 2010; Wild et al., 
2012). The ACCMIP models show a wide range in tropospheric O3 burden changes from 2000 to 2100: –5 
DU (–15%) in RCP2.6 to +5 DU in RCP8.5. The CMIP5 results are similar but not identical: –3 DU (–9%) 
to +10 DU (+30%). The 2030 and 2100 multi-model mean estimates are more robust for ACCMIP which 
includes 5-11 models (range depends on time slice and scenario) than for CMIP5 (4 models). Tropospheric 
O3 changes in the near term (2030–2040) are small (±2 DU), except for RCP8.5 (>3 DU), which shows 
continued growth through to 2100 driven primarily by CH4 increases. The ERF from tropospheric O3 
changes (AII.6.7b) parallels the O3 burden change (Stevenson et al., 2013). 
 
Stratospheric O3 is being driven by declining chlorine levels, changing N2O and CH4, cooler temperatures 
from increased CO2, and a more vigorous overturning circulation in the stratosphere driven by more wave 
propagation under climate change (Butchart et al., 2006; Eyring et al., 2010; Oman et al., 2010). Overall 
stratospheric O3 is expected to increase in the coming decades, reversing the majority of the loss that 
occurred between 1980 and 2000. Best estimates for global mean stratospheric O3 change under the RCP 
scenarios (Table AII.5.1) are taken from the CMIP5 results (Eyring et al., 2013a). By 2100 stratospheric O3 
columns show a 5–7% increase above 2000-levels for all RCPs, recovering to within 1% of the pre-ozone-
hole 1980-levels by 2050, but with latitudinal differences. 
 
11.3.5.1.3 Aerosols 
Aerosol species can be emitted directly (mineral dust, sea salt, black carbon and some organic carbon) or 
indirectly through precursor gases (sulphur dioxide, ammonia, nitrogen oxides, hydrocarbons), see Chapter 
7. CMIP5 models (Lamarque et al., 2011; Shindell et al., 2013) have projected changes in aerosol burden 



Final Draft (7 June 2013) Chapter 11 IPCC WGI Fifth Assessment Report 

Do Not Cite, Quote or Distribute 11-42 Total pages: 123 

(Tg) and optical depth (AOD) to year 2100 using RCP emissions for anthropogenic source (Tables AII.5.3– 
AII.5.8). Total aerosol optical depth (AOD) is dominated by dust and sea salt, but absorbing aerosol optical 
depth (AAOD) is primarily of anthropogenic origin (Chapter 7). Uniformly, anthropogenic aerosols decrease 
under RCPs as expected from the declining emissions (11.3.5, Figure 8.2, AII.2.17–AII.2.22). From years 
2010 to 2030 the aerosol burdens decrease across the RCPs but at varied rates: for sulphate from 6% 
(RCP8.5) to 23% (RCP2.6); for black carbon from 5% (RCP4.5) to 15% (RCP2.6), and for organic carbon 
from 0% (RCP6.0) to 11% (RCP4.5). The summed aerosol loading of these three anthropogenic components 
drop from year 2010 to year 2030 by 5% to 12% (across RCPs), and by year 2100 this drop is 24% to 39% 
(Tables AII.5.5– AII.5.7). These evolving aerosol loadings reduce the magnitude of the negative aerosol 
forcing (Chapter 8; Table AII.6.9) even in the near term (11.3.6.1).  
 
11.3.5.2 Projections of Air Quality for the 21st Century 
 
Future air quality depends on anthropogenic emissions (local, regional, and global), natural biogenic 
emissions, and the physical climate (e.g., Steiner et al., 2006; Meleux et al., 2007; Tao et al., 2007; Wu et al., 
2008; Doherty et al., 2009; Carlton et al., 2010; Steiner et al., 2010; Tai et al., 2010; Hoyle et al., 2011). This 
assessment focuses on O3 and PM2.5 in surface air, reflecting the preponderance of published literature and 
multi-model assessments for these air pollutants (e.g., (HTAP, 2010a) plus the chemistry-climate CMIP5 
and ACCMIP model simulations. Nitrogen and acid deposition are addressed in Chapter 6. Toxic 
atmospheric species such as mercury and persistent organic pollutants are outside this assessment (Jacob and 
Winner, 2009; NRC, 2009; HTAP, 2010c, 2010b).  
 
The global and continental-scale surface O3 and PM2.5 changes assessed here include (i) the impact of 
climate change (Section 11.3.5.2.1), and (ii) the impact of changing global and regional anthropogenic 
emissions (Section 11.3.5.2.2). Changes in local emissions within a metropolitan region or surrounding air 
basin on local air quality projections are not assessed here. Anthropogenic emissions of O3 precursors 
include NOx, CH4, CO, and NMVOC; PM2.5 is both directly emitted (OC, BC) and produced 
photochemically from precursor emissions (NOx, NH3, SO2, NMVOC) (see Tables AII.2.2,16-22). Recent 
reviews describe the impact of temperature-driven processes on O3 and PM2.5 air quality from observational 
and modelling evidence (Isaksen et al., 2009; Jacob and Winner, 2009; Fiore et al., 2012). Projecting future 
air quality empirically from a mean surface warming using the observed correlation with temperature is 
problematic since there is little evidence that future pollution episodes can be simply modeled as all else 
being equal except for a uniform temperature shift. Air quality relationships with synoptic conditions may be 
more robust (e.g., Dharshana et al., 2010; Appelhans et al., 2012; Tai et al., 2012a; Tai et al., 2012b), but 
require the ability to project changes in key conditions like blocking and stagnation episodes. The response 
of blocking frequency to global warming is complex, with summertime increases possible over some 
regions, but models are generally biased compared to observed blocking statistics, and indicate even larger 
uncertainty in projecting changes in blocking intensity and persistence (Box 14.2).  
 
11.3.5.2.1 Climate-driven changes  
Projecting regional air quality faces the challenge of simulating first the changes in regional climate and then 
the feedbacks from atmospheric chemistry and the biosphere. The air pollution response to climate-driven 
changes in the biosphere is uncertain as to sign because of competing effects: e.g., plants currently emit more 
NMVOC with warmer temperatures; with higher CO2 and water stress plants may emit less; with a warmer 
climate the vegetation types may shift to emit either more or less NMVOC; shifting vegetation types may 
also alter surface uptake of ozone and aerosols; and our understanding of chemical oxidation pathways for 
biogenic emissions is incomplete (e.g., Monson et al., 2007; Carlton et al., 2009; Hallquist et al., 2009; Ito et 
al., 2009; Pacifico et al., 2009; Paulot et al., 2009; Pacifico et al., 2012). While studies have split the cause of 
air quality changes into climate versus emissions, these attributions are difficult to assess for several reasons: 
the global-to-regional down-scaling of meteorology that is model dependent (see Chapters 9 and 14, also 
(Manders et al., 2012) the brief simulations that preclude clear separation of climate change from climate 
variability (Nolte et al., 2008; Fiore et al., 2012; Langner et al., 2012a), and the lack of systematically 
explored standard scenarios for local anthropogenic emissions, land-use change and biogenic emissions.  
 
Ozone 
Globally, a warming climate decreases baseline surface O3 almost everywhere but increases O3 levels in 
some polluted regions and seasons. The surface ozone response to climate change alone between 2000 and 
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2030 is shown in Figure 11.21 (CLIMATE), where the ranges reflect multi-model differences in spatial 
averages (solid green lines) and spatial variability within a single model (dashed green lines). There is high 
confidence that in unpolluted regions, higher water vapour abundances and temperatures enhance O3 
destruction, leading to lower baseline O3 levels in a warmer climate (e.g., global average in Figure 11.22). 
Higher CH4 levels such as in RCP8.5 can offset this climate-driven decrease in baseline O3. Other large-
scale factors that could increase baseline O3 in a warming climate include increased lightning NOx and 
stratospheric influx of O3 (see Section 11.3.5.1). Evidence and agreement are limited regarding the impact of 
climate change on long-range transport of pollutants (Wu et al., 2008; HTAP, 2010a; Doherty et al., 2013). 
The global chemistry-climate models assessed here (Figures 11.22, 11.23ab) include most of these feedback 
processes, but a systematic evaluation of their relative impacts is lacking.  
 
In polluted regions, observations show that high-O3 episodes correlate with high temperatures (e.g., (Lin et 
al., 2001; Bloomer et al., 2009; Rasmussen et al., 2012), but these episodes also coincide with cloud-free 
enhanced photochemistry and with air stagnation that concentrates pollution near the surface (e.g., AR4 Box 
7.4). Other temperature-related factors, such as biogenic emissions from vegetation and soils, volatilization 
of NMVOC and NH3, thermal decomposition of organic nitrates to NOx, and wildfire frequency may 
increase with a warming climate and are expected to increase surface O3

 (e.g., (Doherty et al., 2013; Skjøth 
and Geels, 2013); and as reviewed by (Isaksen et al., 2009; Jacob and Winner, 2009; Fiore et al., 2012) 
although some of these processes are known to have optimal temperature ranges (e.g., Sillman and Samson, 
1995; Guenther et al., 2006; Steiner et al., 2010). Overall, the integrated effect of these processes on O3 
remains poorly understood, and they have been implemented with varying levels of complexity in the 
models assessed here.  
 
Models show that a warmer atmosphere can lead to local O3 increases during the peak pollution season (e.g., 
by 2–6 ppb within Central Europe by 2030; green dashed line for Europe in Figure 11.22). Regional models 
projecting summer daytime statistics tend to simulate a wider range of climate-driven changes (e.g., Zhang et 
al., 2008; Avise et al., 2012; Kelly et al., 2012), with most studies focusing on 2050 (Fiore et al., 2012) or 
beyond. For example, summer temperature extremes over parts of Europe are projected to warm more than 
the corresponding mean local temperatures due to enhanced variability at interannual to intraseasonal time 
scales (see Section 12.4.3.3). Several modelling studies note a longer season for O3 pollution in a warmer 
world (Nolte et al., 2008; Racherla and Adams, 2008). For some regions, models agree on the sign of the O3 
response to a warming climate (e.g., increases in Northeastern United States and Southern Europe; decreases 
in Northern Europe), but they often disagree (e.g., the Midwest, Southeast, and Western United States (Jacob 
and Winner, 2009; Weaver et al., 2009; Langner et al., 2012a; Langner et al., 2012b; Manders et al., 2012). 
Several studies have suggested a role for changing synoptic meteorology on future air pollution 
levels(Leibensperger et al., 2008; Jacob and Winner, 2009; Weaver et al., 2009; Lang and Waugh, 2011; Tai 
et al., 2012a; Tai et al., 2012b; Turner et al., 2013), but projected regional changes in synoptic conditions are 
uncertain (see Sections 11.3.2.4, 12.4.3.3, 14.6.3). Observational and modelling evidence together indicate 
that, all else being equal, a warming climate is expected to increase surface O3 in polluted regions (medium 
confidence), although a systematic evaluation of all the factors driving extreme pollution episodes is lacking.  
 
Aerosols 
Evaluations as to whether climate change will worsen or improve aerosol pollution are model-dependent. 
Assessments are confounded by opposing influences on the individual species contributing to total PM2.5 and 
large inter-annual variability caused by the small-scale meteorology (e.g., convection and precipitation) that 
controls aerosol concentrations (Mahmud et al., 2010). For a full discussion, see Chapter 7. Higher 
temperatures generally decrease nitrate aerosol through enhanced volatility but increase sulphate aerosol 
through faster production, although observed PM2.5-temperature correlations also reflect humidity and 
synoptic meteorology (e.g., (Aw and Kleeman, 2003; Liao et al., 2006; Racherla and Adams, 2006; Unger et 
al., 2006a; Hedegaard et al., 2008; Jacobson, 2008; Kleeman, 2008; Pye et al., 2009; Tai et al., 2012b). 
Natural aerosols may increase with temperature, particularly carbonaceous aerosol from wildfires, mineral 
dust, and biogenic secondary organic aerosol (SOA) (Section 7.3.5) (Mahowald and Luo, 2003; Tegen et al., 
2004; Jickells et al., 2005; Woodward et al., 2005; Mahowald et al., 2006; Liao et al., 2007; Mahowald, 
2007; Tagaris et al., 2007; Heald et al., 2008; Spracklen et al., 2009; Jiang et al., 2010; Yue et al., 2010; 
Carvalho et al., 2011; Fiore et al., 2012). SOA formation also depends on anthropogenic emissions and 
atmospheric oxidizing capacity (Carlton et al., 2010; Jiang et al., 2010).  
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Aerosols are scavenged from the atmosphere by precipitation and direct deposition (see Chapter 7). Hence 
most components of PM2.5 are anti-correlated with precipitation (Tai et al., 2010) and aerosol burdens are 
expected to decrease on average where precipitation increases (Racherla and Adams, 2006; Liao et al., 2007; 
Tagaris et al., 2007; Zhang et al., 2008; Avise et al., 2009; Pye et al., 2009). However, a shift in the 
frequency and type of precipitation may be as important as the change in mean precipitation (see Chapter 7). 
Seasonal and regional differences in aerosol burdens versus precipitation further preclude a simple scaling of 
aerosol response to precipitation changes (Kloster et al., 2010; Fang et al., 2011). Climate-driven changes in 
the frequency of drizzle and the mixing depths or ventilation of the surface layer also influence projected 
changes in PM2.5 (e.g., Kleeman, 2008; Dawson et al., 2009; Jacob and Winner, 2009; Mahmud et al., 2010), 
and aerosols in turn can influence locally clouds, precipitation, and scavenging (see Section 7.6, (e.g., Zhang 
et al., 2010b; Roelofs, 2012).  
 
While PM2.5 is expected to decrease in regions where precipitation increases, the climate variability at these 
scales results in only medium confidence for projections at best. Further, consensus is lacking on the other 
factors including climate-driven changes in biogenic and mineral dust aerosols, leading to low confidence in 
the overall impact of climate change on PM2.5 distributions. 
 
[INSERT FIGURE 11.22 HERE] 
Figure 11.22: Changes in surface O3 (ppb) between year 2000 and 2030 driven by climate alone (CLIMATE; green) or 
driven by emissions alone, following CLE (black), MFR (grey), SRES (blue), and RCP (red) emission scenarios. 
Results are reported globally and for the four northern mid-latitude source regions used by the Task Force on 
Hemispheric Transport of Air Pollution (HTAP, 2010a). Where two vertical bars are shown (CLE, MFR, SRES ), they 
represent the multi-model standard deviation of the annual mean based on (left bar; SRES A2 only) the 
ACCENT/Photocomp study (Dentener et al., 2006) and (right bar) the parametric HTAP ensemble (Wild et al., 2012). 
Under Global, the leftmost (dashed green) vertical bar denotes the spatial range in climate-only changes from one 
model Stevenson et al. (2005) while the green square shows global annual mean climate-only changes in another model 
(Unger et al., 2006b). Under Europe, the dashed green bar denotes the range of climate-only changes in summer daily 
maximum O3 in one model (Kesik et al., 2006). Adapted from Figure 3 of (Fiore et al., 2012). 
 
11.3.5.2.2 Changes driven by regional and global anthropogenic pollutant emissions 
Projections for annual-mean surface O3 and PM2.5 for 2000 through 2100 are shown in Figures 11.23a and 
11.25b, respectively. Changes are spatially averaged over selected world (land-only) regions and include the 
combined effects of emission and climate changes under the RCPs. Results are taken from the ACCMIP 
models and a subset of the CMIP5 models that included atmospheric chemistry. Large inter-annual 
variations are evident in the CMIP5 transient simulations, and large regional variations occur in both the 
CMIP5 and the ACCMIP decadal time slice simulations (see (Lamarque et al., 2013) for ACCMIP 
overview). 
 
The largest surface O3 changes under the RCP scenarios are much smaller than those projected under the 
older SRES scenarios (Figures 11.22, 11.23a; Table AII.7; (Lamarque et al., 2011; Wild et al., 2012). By 
2100, global annual multi-model mean surface O3 rises by 12 ppb in SRES A2, but by only 3 ppb in RCP8.5. 
Much larger O3 decreases are projected to occur by 2030 under the MFR scenario (Figure 11.22), which 
assumes that existing control technologies are applied uniformly across the globe (Dentener et al., 2006).  
 
For RCP2.6, RCP4.5 and RCP6.0, the CMIP5/ACCMIP models project that continental-scale spatially 
averaged near-term surface O3 decreases or changes little (–4 to +1 ppb) from 2000 to 2030 for all regions 
except South Asia; while the long-term change to 2100 is a consistent decrease (–14 to –3 ppb) for all 
regions (Figures 11.22, 11.23a; and Table AII.7.3). For RCP8.5, the CMIP5/ACCMIP models project 
continental-scale spatial average surface O3 increases of up to +5 ppb for both 2030 and 2100 (Figure 
11.23a; Table AII.7.3). The increases under RCP8.5 reflect the prominent rise in methane abundances 
(Kawase et al., 2011; Lamarque et al., 2011; Wild et al., 2012), which by 2100 raise background O3 levels by 
5–14 ppb over continental-scale regions ,on average about 8 ppb above RCP4.5 and RCP6.0 which include 
more stable methane pathways over the 21st century (high confidence). Earlier studies have shown that rising 
CH4 abundances (and global NOx emissions) increase baseline O3, and can offset aggressive local emission 
reductions and lengthen the O3 pollution season (Jacob et al., 1999; Prather et al., 2001; Fiore et al., 2002; 
Prather et al., 2003; Hogrefe et al., 2004; Granier et al., 2006; Szopa et al., 2006; Tao et al., 2007; Huang et 
al., 2008; Lin et al., 2008; Wu et al., 2008; Avise et al., 2009; Chen et al., 2009b; Fiore et al., 2009; HTAP, 
2010a; Wild et al., 2012; Lei et al., 2013)  
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The O3 changes driven by the RCP emissions scenarios with fixed, present-day climate (Figure 11.22, (Wild 
et al., 2012) are similar to the changes estimated with the full chemistry-climate models (Figure 11.23a). 
While the regions considered are not identical, the evidence supports a major role for global emissions in 
determining near-term O3 concentrations. Overall, the multi-model ranges associated with the influence of 
near-term climate change on global and regional O3 air quality are smaller than those across emission 
scenarios (Figure 11.22; (HTAP, 2010a; Wild et al., 2012)). 
 
Aerosol changes driven by anthropogenic emissions depend somewhat on oxidant levels (e.g., Unger et al., 
2006a; Kleeman, 2008; Leibensperger et al., 2011a), but generally sulphate follows SO2 emissions and 
carbonaceous aerosols follow the primary elemental and organic carbon emissions. Competition between 
sulphate and nitrate for ammonium (see Chapter 7) means that reducing SO2 emissions while increasing NH3 
emissions as in the RCPs (Tables AII.2.19 and AII.2.20) would lead to near-term nitrate aerosol levels equal 
to or higher than those of sulphate in some regions, see Section 7.3.5.2 (Bauer et al., 2007; Pye et al., 2009; 
Bellouin et al., 2011; Henze et al., 2012). 
 
Regional PM2.5 in the CMIP5 and ACCMIP chemistry-climate models following the RCP scenarios 
generally declines over the 21st century, with little difference across the individual scenarios except for the 
South and East Asia regions (Figure 11.23b). The noisy projections over Africa, the Middle East, and to 
some extent Australia, reflect dust sources and their strong dependence on interannual meteorological 
variability. Over the two Asian regions, different PM2.5 levels between the RCPs are due to (i) OC emission 
trajectories over South Asia and (ii) combined changes in carbonaceous aerosol and SO2 over East Asia 
(Fiore et al., 2012) (Figure 8.SM.1). 
 
Global emissions of aerosols and precursors can contribute to high-PM events. For example, dust trans-
oceanic transport events are observed to increase aerosols in downwind regions (Prospero, 1999; Grousset et 
al., 2003; Chin et al., 2007; Fairlie et al., 2007; Huang et al., 2008; Liu et al., 2009; Ramanathan and Feng, 
2009; HTAP, 2010a). The balance between regional and global anthropogenic emissions versus climate-
driven changes for PM2.5 will vary regionally with future changes in precipitation, wildfires, dust, and 
biogenic emissions.  
 
In summary, lower air pollution levels are projected following the RCP emissions as compared to the SRES 
emissions in the TAR and AR4, reflecting implementation of air pollution control measures (high 
confidence). The range in near-term projections of air quality is driven primarily by emissions (including 
CH4) rather than by physical climate change (medium confidence). The total emission-driven range in air 
quality—including the CLE and MFR scenarios—is larger than that spanned by the RCPs (see Section 
11.3.5.1 for comparison of RCPs and SRES).  
 
[INSERT FIGURE 11.23a HERE] 
Figure 11.23a: Projected changes in annual-mean surface O3 (ppb mole fraction) from 2000 to 2100 following the RCP 
scenarios (8.5 red, 6.0 orange, 4.5 light blue, 2.6 dark blue). Results in each box are averaged over the designated 
coloured land regions. Continuous coloured lines and shading denote the average and full range of 4 chemistry-climate 
models (GFDL-CM3, GISS-E2-R, and NCAR-CAM3.5 from CMIP5 plus LMDz-ORINCA). Coloured dots and 
vertical black bars denote the average and full range of the ACCMIP models (CESM-CAM-superfast, CICERO-
OsloCTM2, CMAM, EMAC-DLR, GEOSCCM, GFDL-AM3, HadGEM2, MIROC-CHEM, MOCAGE, NCAR-
CAM3.5, STOC-HadAM3, UM-CAM) for decadal time slices centered on 2010, 2030, 2050 and 2100. Participation in 
the decadal slices ranges from 2 to 12 models (see (Lamarque et al., 2013)). Changes are relative to the 1986–2005 
reference period for the CMIP5 transient simulations, and relative to the average of the 1980 and 2000 decadal time 
slices for the ACCMIP ensemble. The average value and model standard deviation for the reference period is shown in 
the top of each panel for CMIP5 models (left) and ACCMIP models (right). In cases where multiple ensemble members 
are available from a single model, they are averaged prior to inclusion in the multi-model mean. Adapted from (Fiore et 
al., 2012). 
 
[INSERT FIGURE 11.23b HERE] 
Figure 11.23b: Projected changes in annual-mean surface PM2.5 (micrograms m–3 of aerosols with diameter less than 
2.5 micrometers) from 2000 to 2100 following the RCP scenarios (8.5 red, 6.0 orange, 4.5 light blue, 2.6 dark blue). 
PM2.5 values are calculated as the sum of individual aerosol components (black carbon + organic carbon + sulfate + 
secondary organic aerosol + 0.1*dust + 0.25*sea salt). Nitrate was not reported for most models and is not included 
here. See Figure 11.23a for details, but note that fewer models contribute: GISS-E2-R and GFDL-CM3 from CMIP5; 
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CICERO-OsloCTM2, GEOSCCM, GFDL-AM3, HadGEM2, MIROC-CHEM, and NCAR-CAM3.5 from ACCMIP. 
Adapted from (Fiore et al., 2012). 
 
11.3.5.2.3 Extreme weather and air pollution 
Extreme air quality episodes are associated with changing weather patterns, such as heat waves and 
stagnation episodes (Logan, 1989; Vukovich, 1995; Cox and Chu, 1996; Mickley et al., 2004; Stott et al., 
2004). Heat waves are generally associated with poor air quality (Ordóñez et al., 2005; Vautard et al., 2005; 
Lee et al., 2006b; Struzewska and Kaminski, 2008; Tressol et al., 2008; Vieno et al., 2010; Hodnebrog et al., 
2012b). While anthropogenic climate change has increased the near-term risk of such heat waves (Stott et 
al., 2004; Clark et al., 2010; Diffenbaugh and Ashfaq, 2010) (Chapter 10; Section 11.3.2.5.1), projected 
changes in the frequency of regional air stagnation events, which are largely driven by blocking events, 
remain difficult to assess: the frequency of blocking events with persistent high pressure is projected to 
decrease in a warming climate but increases may occur in some regions, and projected changes in their 
intensity and duration are highly uncertain (Chapters 9, 14; Box 14.2). Projections in regional air pollution 
extremes are necessarily conditioned on projected changes in these weather patterns. The severity of extreme 
pollution events also depends on local emissions (see references in Fiore et al. (2012)). Feedbacks from 
vegetation (higher biogenic NMVOC emissions, lower stomatal uptake of O3 with higher temperatures) can 
combine with similar positive feedbacks via dust and wildfires to worsen air pollution and its impacts during 
heat waves (Lee et al., 2006a; Jiang et al., 2008; Royal Society, 2008; Flannigan et al., 2009; Andersson and 
Engardt, 2010; Vieno et al., 2010; Hodnebrog et al., 2012b; Hodnebrog et al., 2012a; Jaffe and Wigder, 
2012; Mues et al., 2012).  
 
There is high agreement across numerous modelling studies projecting increases in extreme O3 pollution 
events over the United States and Europe, but the projections do not consistently agree at the regional level 
(Kleeman, 2008; Jacob and Winner, 2009; Jacobson and Streets, 2009; Weaver et al., 2009; Huszar et al., 
2011; Katragkou et al., 2011; Langner et al., 2012b) because they depend on accurate projections of local 
emissions, regional climate and poorly understood biospheric feedbacks. While observational evidence 
clearly demonstrates a strong statistical correlation between extreme temperatures (heat waves) and pollution 
events, this temperature correlation reflects in part the coincident occurrence of stagnation events and clear 
skies that also drive extreme pollution. Mechanistic understanding of biogenic emissions, deposition, and 
atmospheric chemistry is consistent with a temperature-driven increase in pollution extremes in already 
polluted regions, although these processes may not scale simply with mean temperature under a changing 
climate (see Section 11.3.5.2.1) and better projections of the changing meteorology at regional scales is 
needed. Assuming all else is equal (e.g., local anthropogenic emissions) this collective evidence indicates 
that uniformly higher temperatures in polluted environments will trigger regional feedbacks during air 
stagnation episodes that will increase peak pollution (medium confidence). 
 
11.3.6 Additional Uncertainties in Projections of Near-Term Climate 
 
As discussed in Section 11.3.1, most of the projections presented in Sections 11.3.2–11.3.4 are based on the 
RCP4.5 scenario and rely on the spread amongst the CMIP5 ensemble of opportunity as an ad-hoc measure 
of uncertainty. It is possible that the real world might follow a path outside (above or below) the range 
projected by the CMIP5 models. Such an eventuality could arise if there are processes operating in the real 
world that are missing from, or inadequately represented in, the models. Two main possibilities must be 
considered: 1) Future radiative and other forcings may diverge from the RCP4.5 scenario and, more 
generally, could fall outside the range of all the RCP scenarios; 2) The response of the real climate system to 
radiative and other forcing may differ from that projected by the CMIP5 models. A third possibility is that 
internal fluctuations in the real climate system are inadequately simulated in the models. The fidelity of the 
CMIP5 models in simulating internal climate variability is discussed in Chapter 9.  
 
Future changes in radiative forcing will be caused by anthropogenic and natural processes. The 
consequences for near-term climate of uncertainties in anthropogenic emissions and land use are discussed in 
Section 11.3.6.1. The uncertainties in natural radiative forcing that are most important for near term climate 
are those associated with future volcanic eruptions and variations in the radiation received from the sun 
(solar output), and are discussed in Section 11.3.6.2. In addition, carbon cycle and other biogeochemical 
feedbacks in a warming climate could potentially lead to abundances of CO2 and CH4 (and hence radiative 
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forcing) outside the range of the RCP scenarios, but these feedbacks are not expected to play a major role in 
near term climate—see Chapters 6 and 12 for further discussion. 
 
The response of the climate system to radiative and other forcing is influenced by a very wide range of 
processes, not all of which are adequately simulated in the CMIP5 models (Chapter 9). Of particular concern 
for projections are mechanisms that could lead to major ‘surprises’ such as an abrupt or rapid change that 
affects global-to-continental scale climate. Several such mechanisms are discussed in this assessment report; 
these include: rapid changes in the Arctic (Section 11.3.4.4 and Chapter 12); rapid changes in the ocean’s 
overturning circulation (Chapter 12); rapid change of ice sheets (Chapter 13); and rapid changes in regional 
monsoon systems and hydrological climate (Chapter 14). Additional mechanisms may also exist as 
synthesized in Chapter 12. These mechanisms have the potential to influence climate in the near term as well 
as in the long term, albeit the likelihood of substantial impacts increases with global warming and is 
generally lower for the near term. Section 11.3.6.3 provides an overall assessment of projections for global 
mean surface air temperature, taking into account all known quantifiable uncertainties. 
 
11.3.6.1 Uncertainties in Future Anthropogenic Forcing and the Consequences for Near-Term Climate 
 
Climate projections for periods prior to year 2050 are not very sensitive to available alternative scenarios for 
anthropogenic CO2 emissions (see Section 11.3.2.1.1; (Stott and Kettleborough, 2002; Meehl et al., 2007b). 
Near-term projections, however, may be sensitive to changes in emissions of climate forcing agents with 
lifetimes shorter than CO2, particularly the greenhouse gases CH4 (lifetime of a decade), tropospheric O3 
(lifetime of weeks), and tropospheric aerosols (lifetime of days). Although the RCPs and SRES scenarios 
span a similar range of total effective radiative forcing (ERF, see Section 7.5, Figure 7.3, Chapter 8), they 
include different ranges of ERF from aerosol, CH4, and tropospheric O3 (see Section 11.3.5.1, Tables AII.6.2 
and AII.6.7–AII.6.10). From years 2000 to 2030 the change in ERF across the RCPs ranges from –0.05 to 
+0.14 W m–2 for CH4 and from –0.04 to +0.08 W m–2 for tropospheric O3 (AII.6.2, 6.7; (Stevenson et al., 
2013). From years 2000 to 2030 the total aerosol ERF becomes less negative, increasing by +0.26 W m–2 for 
RCP8.5 (only RCP evaluated, ACCMIP results see Table AII.6.9; (Shindell et al., 2013). Total ERF change 
across scenarios derived from the CMIP5 ensemble can only be compared beginning in 2010. For the period 
2010 to 2030, total ERF in the CMIP5 decadal averages increases by +0.5 to +1.0 W m–2 (RCP2.6+6.0 to 
RCP8.5; AII.6.10) while total ERF from the published RCPs increases by +0.7 to +1.1 W m–2 (RCP2.6+6.0 
to RCP8.5, AII.6.8). Here we re-examine the near-term temperature increases projected from the RCPs (see 
Section 11.3.2.1.1) and assess the potential for changes in near-term anthropogenic forcing to induce climate 
responses that fall outside these scenarios. 
 
For the different RCP pathways the increase in global mean surface temperature by 2026–2035 relative to 
the reference period 1986-2005 ranges from 0.74°C (RCP2.6+6.0) to 0.94°C (RCP8.5) (median of CMIP5 
models, see Figure 11.24, Table AII.7.5). This inter-scenario range of 0.20°C is smaller than the inter-model 
spread for an individual scenario: 0.33°C–0.52°C (defined as the 17–83% range of the decadal means of the 
models). This RCP inter-scenario spread may be too narrow as discussed in Section 11.3.5.1. The 
temperature increase of the most rapidly warming scenario (RCP8.5) emerges from inter-model spread (i.e., 
becomes greater than 2 times the 17–83% range) by about 2040, due primarily to increasing CH4 and CO2. 
At 2040 the ERF in the published RCPs ranges from 2.6 (RCP2.6) to 3.6 (RCP8.5) W m–2, and about 40% of 
this difference is due to the steady increases in CH4 and tropospheric O3 found only in RCP8.5. RCP6.0 has 
the lowest ERF and thus warms less rapidly than other RCPs up to 2030 (Table AII.6.8).  
 
[INSERT FIGURE 11.24a HERE] 
Figure 11.24a: Near-term increase in global mean surface air temperatures (°C) across scenarios. Increases in 10-year 
mean (2016–2025, 2026–2035, 2036–2045 and 2046–2055) relative to the reference period (1986–2005) of the globally 
averaged surface air temperatures. Results are shown for the CMIP5 model ensembles (see Annex I for listing of 
models included) for RCP2.6 (dark blue), RCP4.5 (light blue), RCP6.0 (orange), and RCP8.5 (red) and the CMIP3 
model ensemble (22 models) for SRES A1b (black). The multi-model median (square), 17–83% range (wide boxes), 5–
95% range (whiskers) across all models are shown for each decade and scenario. Values are provided in Table AII.7.5. 
Also shown are best estimates for a UNEP scenario (UNEP-ref, gray upward triangles) and one that implements 
technological controls on methane emissions (UNEP CH4, red downward-pointing triangles) (UNEP and WMO, 2011; 
Shindell et al., 2012a). Both UNEP scenarios are adjusted to reflect the 1986–2005 reference period. The right-hand 
floating axis shows increases in global mean surface air temperature relative to pre-industrial era (0.61°C) defined from 
the difference between 1850–1900 and 1986–2005 in the HadCRUT4 global mean temperature analysis (Chapter 2 and 
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Table AII.1.3). Note that uncertainty remains on how to match the 1986–2005 reference period in observations with 
that in CMIP5 results, see discussion of Figure 11.25.  
 
In terms of geographic patterns of warming, differences between RCP8.5 and RCP2.6 are within ±0.5°C 
over most of the globe for both summer and winter seasons for 2016–2035 (Figure 11.24b), but by 2036–
2055 RCP8.5 is projected to be warmer than RCP2.6 by 0.5°C to 1.0°C over most continents, and by more 
than 1.0°C over the Arctic in winter. Although studies suggest that the Arctic response is complex and 
particularly sensitive to BC aerosols (Flanner et al., 2007; Quinn et al., 2008; Jacobson, 2010; Ramana et al., 
2010; Bond et al., 2013; Sand et al., 2013), the difference in ERF between RCP2.6 and RCP8.5 is dominated 
by the greenhouse gases, as the BC atmospheric burden is decreasing through the century with little 
difference across the RCPs (Table AII.5.7).  
 
In terms of geographic patterns of warming, differences between RCP8.5 and RCP2.6 are within ±0.5°C 
over most of the globe for both summer and winter seasons for 2016–2035 (Figure 11.24b), but by 2036-
2055 RCP8.5 is projected to be warmer than RCP2.6 by 0.5°C to 1.0°C over most continents, and by more 
than 1.0°C over the Arctic in winter. Although studies suggest that the Arctic response is complex and 
particularly sensitive to BC aerosols (Flanner et al., 2007; Quinn et al., 2008; Jacobson, 2010; Ramana et al., 
2010; Bond et al., 2013; Sand et al., 2013), the difference in ERF between RCP2.6 and RCP8.5 is dominated 
by the greenhouse gases, as the BC atmospheric burden is decreasing through the century with little 
difference across the RCPs (Table AII.5.7).  
 
[INSERT FIGURE 11.24b HERE] 
Figure 11.24b: Global maps of near-term differences in surface air temperature across the RCP scenarios. Differences 
between (RCP8.5) and low (RCP2.6) scenarios for the CMIP5 model ensemble (31 models) are shown for averages 
over 2016–2035 (left) and 2036–2055 (right) in boreal winter (DJF; top row) and summer (JJA; bottom row). 
 
Large changes in emissions of the well-mixed greenhouse gases (WMGHG) produce only modest changes in 
the near term because these gases are long lived: For example, a 50% cut in Kyoto-gas emissions beginning 
in 1990 offsets the warming that otherwise would have occurred by only –0.11°C ± 0.03°C after 12 years 
(Prather et al., 2009). In contrast, many studies have noted the large potential for air pollutant emission 
reductions to influence near-term climate because radiative forcing from these species responds almost 
immediately to changes in emissions. Decreases in sulphate aerosol have occurred through mitigation of 
both air pollution and fossil-fuel emissions, and are expected to produce a near-term rise in surface 
temperatures (e.g., (Jacobson and Streets, 2009; Raes and Seinfeld, 2009; Wigley et al., 2009; Kloster et al., 
2010; Makkonen et al., 2012).  
 
Since global-mean aerosol forcing decreases in all RCP scenarios (AII.5.3–AII.5.7, AII.6.9; see Section 
11.3.5), the potential exists for a systematic difference between the CMIP3 models forced with the SRES 
scenarios and the CMIP5 models forced with the RCP scenarios. One study directly addressed the impacts of 
aerosols on climate under the RCP4.5 scenario, and found that the aerosol emission reductions induce about 
a 0.2°C warming in the near-term compared with fixed 2005 aerosol levels (more indicative of the SRES 
CMIP3 aerosols) (Levy et al., 2013). The cooling over the period 1951 to 2010 that is attributed to non-
WMGHG anthropogenic forcing in the CMIP5 models (Figures 10.4 and 10.5) has a likely range of –0.25°C 
± 0.35°C compared to +0.9°C ± 0.4°C for WMGHG. The non-WMGHG forcing generally includes the 
influence of non-aerosol warming agents over the historical period such as tropospheric ozone, and a simple 
correction would give an aerosol-only cooling that is about 50% larger in magnitude (see ERF components, 
Chapter 8). The near-term reductions in total aerosol emissions, however, even under the MFR scenario, are 
at most about 50% (AII.2.17–AII.2.22), indicating a maximum near-term temperature response of about half 
that induced by the addition of aerosols over the last century. Hence, the evidence indicates that differences 
in aerosol loading from the SRES (conservatively assuming roughly constant aerosols) to the RCP scenarios 
can increase warming in the CMIP5 models relative to the CMIP3 models by up to 0.2°C in the near term for 
the same WMGHG forcing (medium confidence). 
 
Many studies show that air pollutants influence climate and identify approaches to mitigate both air pollution 
and global warming by decreasing CH4, tropospheric O3, and absorbing aerosols, particularly black carbon 
(BC) (Hansen et al., 2000; Fiore et al., 2002; Dentener et al., 2005; West et al., 2006; e.g., Fiore et al., 2008; 
Royal Royal Society, 2008; Fiore et al., 2009; Jacobson, 2010; Penner et al., 2010; UNEP and WMO, 2011; 
Anenberg et al., 2012; Shindell et al., 2012b; Unger, 2012; Bond et al., 2013). An alternative set of 
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technologically-based scenarios (UNEP and WMO, 2011) that examined controls on CH4 and BC emissions 
designed to reduce tropospheric CH4, O3 and BC also included reductions of co-emitted species (e.g., CO, 
organic carbon, NOx). These reductions were applied in two CMIP5 models, and then those model responses 
were combined with the AR4 best estimates for the range of climate sensitivity and for uncertainty estimates 
for each component of radiative forcing (Shindell et al., 2012a). This approach provided a near-term best 
estimate and range of global mean temperature change for the reference (UNEP-ref) and CH4-mitigation 
(UNEP-CH4) scenarios (Figure 11.24a, adjusted to reflect the 1986–2005 reference period). Under UNEP-
CH4, anthropogenic CH4 emissions decrease by 24% from 2010 to 2030, and global warming is reduced by 
0.16°C (best estimate) at 2030 and by 0.28°C at 2050. A third UNEP scenario (UNEP-BC+CH4; not shown) 
adds reductions in BC by 78% onto CH4 mitigation and reduces warming by an additional 0.12°C (best 
estimate) at 2030. However, it greatly increases the uncertainty due to poor understanding of associated 
cloud adjustments (i.e., semi-direct and indirect effects) as well as of the ratio of BC to co-emitted reflective 
organic carbon (OC) aerosols, their size distributions and mixing states (see Chapter 7, Section 7.5). 
Corresponding BC reductions in the RCPs are only 4–11%. 
 
Beyond global mean temperature, shifting magnitudes and geographic patterns of emissions may induce 
aerosol-specific changes in regional atmospheric circulation and precipitation. See Chapter 7, especially 
Sections 7.6.2 and 7.6.4 for assessment of this work (Roeckner et al., 2006; Menon and et al., 2008; Ming et 
al., 2010; Ott et al., 2010; Randles and Ramaswamy, 2010; Allen and Sherwood, 2011; Bollasina et al., 
2011; Leibensperger et al., 2011b; Ming et al., 2011; Fyfe et al., 2012; Ganguly et al., 2012; Rotstayn et al., 
2012; Shindell et al., 2012b; Teng et al., 2012; Bond et al., 2013). Recent trends in aerosol-fog interactions 
and snow-pack decline are implicated in more rapid regional warming in Europe (van Oldenborgh et al., 
2010; Ceppi et al., 2012; Scherrer et al., 2012), and coupling of aerosols and soil moisture could increase 
near-term local warming in the eastern US (Mickley et al., 2011). Major changes in the tropical circulation 
and rainfall have been attributed to increasing aerosols, but studies often disagree in sign (see Section 
11.3.2.4.3, Chapters 10 and 14). The lack of standardization (e.g., different regions, different mixtures of 
reflecting and absorbing aerosols) and agreement across studies prevents generalization of these findings to 
project aerosol-induced changes in regional atmospheric circulation or precipitation in the near term.  
 
Land use and land cover change (LULCC, see Chapter 6), including deforestation, forest degradation and 
agricultural expansion for bioenergy (Georgescu et al., 2009; Anderson-Teixeira et al., 2012), can alter 
global climate forcing through changing surface albedo (assessed as ERF, Chapter 8), the hydrological cycle, 
greenhouse gases (for CO2, see Chapters 6 and 12), or aerosols. The shift from forest to grassland in many 
places since the pre-industrial era has been formally attributed as a cause of regionally lower mean and 
extreme temperatures (Christidis et al., 2013). RCP CO2 and CH4 anthropogenic emissions include land use 
changes (Hurtt et al., 2011) that vary with the underlying storylines and differ across RCPs. These global-
scale changes in crop and pasture land projected over the near term (+2% for RCP2.6+8.5; –4% for 
RCP4.5+6.0) are smaller in magnitude than the 1950–2000 change (+6%) (see Figure 6.23). Overall LULCC 
has had small impact on ERF (–0.15 W m–2, see AII.1.2) and thus as projected is not a major factor in near-
term climate change on global scales.  
 
Land use changes can also lead to sustained near-term changes in regional climate through modification of 
the biogeophysical properties that alter the water and energy cycles. Local- and regional-scale climate 
responses to LULCC can exceed those associated with global mean warming (Baidya Roy and Avissar, 
2002; Findell et al., 2007; Pitman et al., 2009; Pielke et al., 2011; Boisier et al., 2012; de Noblet-Ducoudre et 
al., 2012; Lee and Berbery, 2012; Pitman et al., 2012). Examples of LULCC-driven changes include: 
Brazilian conversion to sugarcane induces seasonal shifts of 1-2°C (Georgescu et al., 2013); European 
forested areas experience less severe heat waves (Teuling et al., 2010); and deforested regions over the 
Amazon lack deep convective clouds (Wang et al., 2009). Systematic assessment of near-term, local-to-
regional climate change is beyond the scope here. 
 
In summary, climate projections for the near term are not very sensitive to the range in anthropogenic 
emissions of CO2 and other WMGHG. By the 2040s the CMIP5 median for global mean temperature ranges 
from a low of +0.9°C (RCP2.6 and RCP6.0) to a high of +1.3°C (RCP8.5) above the CMIP5 reference 
period (Figure 11.24a; Table AII.7.5). See discussion below regard possible offsets between the observed 
and CMIP5 reference periods. Alternative CH4 scenarios incorporating large emission reductions outside the 
RCP range would offset near-term warming by –0.2°C (medium confidence). Aerosols remain a major 
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source of uncertainty in near-term projections, on both global and regional scales. Removal of half of the 
sulphate aerosol, as projected before 2030 in the MFR scenario and by 2050 in most RCPs would increase 
warming by up to +0.2°C (medium confidence). Actions to reduce BC aerosol could reduce warming, but the 
magnitude is highly uncertain, depending on co-emitted (reflective) aerosols and aerosol-cloud interactions 
(Chapter 7, Section 7.5). In addition, near-term climate change, including extremes and precipitation, may be 
driven locally by land-use change and shifting geographic patterns of aerosols; and these regional climatic 
effects may exceed those induced by the global ERF. 
 
11.3.6.2 Uncertainties in Future Natural Radiative Forcing and the Consequences for Near-Term Climate 
 
11.3.6.2.1 The effects of future volcanic eruptions 
As discussed in Chapters 8 and 10, explosive volcanic eruptions are the major cause of natural variations in 
radiative forcing on interannual to decadal timescales. Most important are large tropical and subtropical 
eruptions that inject substantial amounts of sulfur dioxide gas (SO2) directly into the stratosphere. The 
subsequent formation of sulphate aerosols leads to a negative radiative forcing of several W m–2, with a 
typical lifetime of a year (Robock, 2000). The eruption of Mount Pinatubo in 1991 was one of the largest in 
recent times, with a return period of about 3 times per century, but dwarfed by Tambora in 1815 (Gao et al., 
2008). Pinatubo caused a rapid drop in a global mean surface air temperature of several tenths °C over the 
following year, but this signal disappeared over the next five years (Hansen et al., 1992; Soden et al., 2002; 
Bender et al., 2010). In addition to global mean cooling, there are effects on the hydrological cycle (e.g., 
(Trenberth and Dai, 2007), atmosphere and ocean circulation (e.g., (Stenchikov et al., 2006; Ottera et al., 
2010). The surface climate response typically persists for a few years, but the subsurface ocean response can 
persist for decades or centuries, with consequences for sea level rise (Delworth et al., 2005; Stenchikov et 
al., 2009; Gregory, 2010; Timmreck, 2012). 
 
While it is possible to detect when various existing volcanoes become more active, or are more likely to 
erupt, the precise timing of an eruption, the amount of sulfur dioxide emitted and its distribution in the 
stratosphere are not predictable until after the eruption. Eruptions comparable to Mount Pinatubo can be 
expected to cause a short term cooling of the climate with related effects on surface climate that persist for a 
few years before a return to warming trajectories discussed in Section 11.3.2. Larger eruptions, or several 
eruptions occurring close together in time, would lead to larger and/or more persistent effects. 
 
11.3.6.2.2 The effects of future changes in solar forcing 
The future CMIP5 climate simulations using the RCP scenarios include an 11-year variation in total solar 
irradiance (TSI) but no underlying trend beyond 2005. Chapter 10 noted that there has been little observed 
trend in TSI during a time period of rapid global warming since the late 1970s, but that the 11-year solar 
cycle does introduce a significant and measurable pattern of response in the troposphere (Section 10.3.1.1.3). 
As discussed in Chapter 8 (Section 8.4.1.3), the Sun has been in a ‘grand solar maximum’ of magnetic 
activity on the multi-decadal timescale. However, the most recent solar minimum was the lowest and longest 
since 1920, and some studies (e.g., (Lockwood, 2010) suggest there could be a continued decline towards a 
much quieter period in the coming decades, but there is low confidence in these projections (Section 
8.4.1.3). Nevertheless, if there is such a diminished solar activity, there is a high confidence that the 
variations in TSI radiative forcing will be much smaller than the projected increased forcing due to 
greenhouse gases (Section 8.4.1.3). In addition, studies that have investigated the effect of a possible decline 
in TSI on future climate have shown that the associated decrease in global mean surface temperature is much 
smaller than the warming expected from increases in anthropogenic greenhouse gases (Feulner and 
Rahmstorf, 2010; Jones et al., 2012; Meehl et al., 2013b) However, regional impacts could be more 
significant (Xoplaki et al., 2001; Mann et al., 2009; Gray et al., 2010; Ineson et al., 2011). 
 
As discussed in Section 8.4.1, a recent satellite measurement (Harder et al., 2009) found much greater than 
expected reduction at UV wavelengths in the recent declining solar cycle phase. Changes in solar UV drive 
stratospheric O3 chemistry and can change RF. (Haigh et al., 2010) show that if these observations are 
correct, they imply the opposite relationship between solar RF and solar activity over that period than has 
hitherto been assumed. These new measurements therefore increase uncertainty in estimates of the sign of 
solar RF, but they are unlikely to alter estimates of the maximum absolute magnitude of the solar 
contribution to RF, which remains small (Chapter 8). However, they do suggest the possibility of a much 
larger impact of solar variations on the stratosphere than previously thought, and some studies have 
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suggested that this may lead to significant regional impacts on climate (as discussed in Section 10.3.1.1.3) 
that are not necessarily reflected by the RF metric (see Section 8.2.16). 
 
In summary, possible future changes in solar irradiance could influence the rate at which global mean 
surface air temperature increases, but there is high confidence that this influence will be small in comparison 
to the influence of increasing concentrations of greenhouse gases in the atmosphere. Understanding of the 
impacts of changes in solar irradiance on continental and sub-continental scale climate remains low. 
 
11.3.6.3 Synthesis of Near-Term Projections of Global Mean Surface Air Temperature 
 
Figure 11.25 provides a synthesis of near-term projections of global mean surface air temperature (GMST) 
from CMIP5, CMIP3, and studies that have attempted to use observations to quantify projection uncertainty 
(see Section 11.3.2.1). On the basis of this evidence, an attempt is made here to assess a likely range for 
GMST in the period 2016–2035. Such an overall assessment is not straightforward. The following points 
must be taken into account: 
 
(1) No likelihoods are associated with the different RCP scenarios. For this reason, previous IPCC 
Assessment Reports have only presented projections that are conditional on specific scenarios. Here we 
attempt a broader assessment across all four RCP scenarios. This is possible only because, as discussed in 
Section 11.3.6.1, near-term projections of GMST are not especially sensitive to these different scenarios.  
 
(2) In the near-term it is expected that increases in GMST will be driven by recent and future increases in 
greenhouse gas concentrations and future decreases in anthropogenic aerosols, as found in all the RCP 
scenarios. Figure 11.25c shows that in the near-term the CMIP3 projections based on the SRES scenarios are 
generally cooler than the CMIP5 projections based on the RCP scenarios. This difference is at least partly 
attributable to higher aerosol concentrations in the SRES scenarios (see Section 11.3.6.1). 
 
(3) The CMIP3 and CMIP5 projections are ensembles of opportunity, and it is explicitly recognised that 
there are sources of uncertainty not simulated by the models. Evidence of this can be seen by comparing the 
Rowlands et al (2012) projections for the A1B scenario, which were obtained using a very large ensemble in 
which the physics parameterizations were perturbed in a single climate model, with the corresponding raw 
multi-model CMIP3 projections. The former exhibit a substantially larger likely range than the latter. A 
pragmatic approach to addressing this issue, which was used in the AR4 and is also used in Chapter 12, is to 
consider the 5–95% CMIP3/5 range as a “likely” rather than “very likely” range.  
 
(4) As discussed in Section 11.3.6.2, the RCP scenarios assume no underlying trend in total solar irradiance 
and no future volcanic eruptions. Future volcanic eruptions cannot be predicted and there is low confidence 
in projected changes in solar irradiance (Chapter 8). Consequently the possible effects of future changes in 
natural forcings are excluded from the assessment here. 
 
(5) As discussed in Section 11.3.2.1.1 observationally-constrained “ASK” projections (Gillett et al., 2013; 
Stott et al., 2013) are 10–15% cooler (median values for RCP4.5; 6–10% cooler for RCP8.5), and have a 
narrower range, than the corresponding “raw” (uninitialized) CMIP5 projections. The reduced rate of 
warming in the ASK projections is related to evidence from Chapter 10 (Section 10.3.1) that “some CMIP5 
models have a higher sensitivity to greenhouse gases and a larger response to other anthropogenic forcings 
(dominated by the effects of aerosols) than the real world (medium confidence).” These models may warm 
too rapidly as greenhouse gases increase and aerosols decline. 
 
(6) Over the last two decades the observed rate of increase in GMST has been at the lower end of rates 
simulated by CMIP5 models (Figure11.25a). This hiatus in GMST rise is discussed in detail in Box 9.2 
(Chapter 9), where it is concluded that the hiatus is attributable, in roughly equal measure, to a decline in the 
rate of increase in effective radiative forcing (ERF) and a cooling contribution from internal variability 
(expert judgment, medium confidence). The decline in the rate of increase in ERF is primarily attributed to 
natural (solar and volcanic) forcing but there is low confidence in quantifying the role of forcing trend in 
causing the hiatus, because of uncertainty in the magnitude of the volcanic forcing trend and low confidence 
in the aerosol forcing trend. Concerning the higher rate of warming in CMIP5 simulations it is concluded 
that there is a substantial contribution from internal variability but that errors in ERF and in model responses 
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may also contribute. Confidence in this assessment is low because of uncertainties in aerosol forcing in 
particular.  
 
The observed hiatus has important implications for near-term projections of GMST. A basic issue concerns 
the sensitivity of projections to the choice of reference period. Figure 11.25b and c show the 5-95% ranges 
for CMIP5 projections using a 1986–2005 reference period (light grey), and the same projections using a 
2006–2012 reference period (dark grey). The latter projections are cooler, and the effect of using a more 
recent reference period appears similar to the effect of initialization (discussed in Section 11.3.2.1.1 and 
shown in Figure 11.25c for RCP4.5). Using this more recent reference period, the 5–95% range for the mean 
GMST in 2016–2035 relative to 1986–2005 is 0.36°C–0.79°C (using all RCP scenarios, weighted to ensure 
equal weights per model and using an estimate of the observed GMST anomaly for (2006–2012)–(1986–
2005) of 0.16°C). This range may be compared with the range of 0.48°C–1.15°C obtained from the CMIP5 
models using the original 1986–2005 reference period.  
 
(7) In view of the sensitivity of projections to the reference period it is helpful to consider the likely rate of 
change of GMST in the near-term. The CMIP5 5-95% ranges for GMST trends in the period 2012–2035 are 
0.11°C–0.41°C per decade. This range is similar to, though slightly narrower than, the range found by 
Easterling and Wehner (2009) for the CMIP3 SRES A2 scenario over the longer period 2000–2050. It may 
also be compared with recent rates in the observational record (e.g., ~0.26°C per decade for 1984–1998 and 
~0.04°C per decade for hiatus period 1998–2012; See Box 9.2). The RCP scenarios project that ERF will 
increase more rapidly in the near-term than occurred over the hiatus period (see Box 9.2 and Annex II), 
which is consistent with more rapid warming. In addition, Box 9.2 includes an assessment that internal 
variability is more likely than not to make a positive contribution to the increase in GMST in the near-term. 
Internal variability is included in the CMIP5 projections, but because almost all the CMIP5 models do not 
capture the hiatus, the distribution of CMIP5 near-term trends will not reflect this assessment and might, as a 
result, be biased low. This uncertainty, however, is somewhat counter balanced by the evidence of point (5), 
which suggests a high bias in the distribution of near-term trends. A further projection of GMST for the 
period 2016–2035 may be obtained by starting from the observed GMST for 2012 (0.14°C relative to 1986–
2005) and projecting increases at rates between the 5–95% CMIP5 range of 0.11°C–0.41°C per decade. The 
resulting range of 0.29°C–0.69°C, relative to 1986–2005, is shown on Figure 11.25(c).  
 
Overall, in the absence of major volcanic eruptions – which would cause significant but temporary cooling – 
and, assuming no significant future long term changes in solar irradiance, it is likely (>66% probability) that 
the GMST anomaly for the period 2016–2035, relative to the reference period of 1986–2005 will be in the 
range 0.3°C–0.7°C (expert assessment, to one significant figure; medium confidence) This range is 
consistent, to one significant figure, with the range obtained by using CMIP5 5–95% model trends for 2012–
2035. It is also consistent with the CMIP5 5–95% range for all four RCP scenarios of 0.36°C–0.79°C, using 
the 2006–2012 reference period, after the upper and lower bounds are reduced by 10% to take into account 
the evidence noted under point (5) that some models may be too sensitive to anthropogenic forcing. The 
0.3°C–0.7°C range includes the likely range of the ASK projections and initialised predictions for RCP4.5. It 
corresponds to a rate of change of GMST between 2012 and 2035 in the range 0.12°C–0.42°C per decade. 
The higher rates of change are likely to be associated with a significant positive contribution from internal 
variability (Box 9.2) and/or high rates of increase in Effective Radiative Forcing (e.g., as found in RCP8.5). 
Note that an upper limit of 0.8°C on the 2016–2035 GMST corresponds to a rate of change over the period 
2012–2035 of 0.49°C per decade, which is considered unlikely. The assessed rates of change are consistent 
with the AR4 SPM statement that ‘For the next few decades a warming of about 0.2°C per decade is 
projected for a range of SRES emission scenarios’. However, the implied rates of warming over the period 
from 1986–2005 to 2016–2035 are lower as a result of the hiatus: 0.10°C–0.23°C per decade, suggesting the 
AR4 assessment was near the upper end of current expectations for this specific time interval. 
 
The assessment here provides only a likely range for GMST. Possible reasons why the real world might 
depart from this range include: radiative forcing departs significantly from the RCP scenarios, either due to 
natural (e.g., major volcanic eruptions, changes in solar irradiance) or anthropogenic (e.g., aerosol or 
greenhouse gas emissions) causes; processes that are poorly simulated in the CMIP5 models exert a 
significant influence on GMST. The latter class includes: a possible strong “recovery” from the recent hiatus 
in GMST; the possibility that models might underestimate decadal variability (but see Section 9.5.3.1); the 
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possibility that model sensitivity to anthropogenic forcing may differ from that of the real world (see point 
5); and the possibility of abrupt changes in climate (see introduction to Sections 11.3.6 and 12.5.5). 
 
The assessment here has focused on 20-year mean values of GMST for the period 2016–2035. There is no 
unique method to derive a likely range for annual mean values from the range for 20-year means, so such 
calculations necessarily involve additional uncertainties (beyond those outlined in the previous paragraph), 
and lower confidence. Nevertheless, it is useful to attempt to estimate a range for annual mean values, which 
may be compared with raw model projections and, in future, with observations. To do so, the following 
simple approach is used: 1) Starting in 2009 from the observed GMST anomaly for 2006–2012 of 0.16°C 
(relative to 1986–2005), linear trends are projected over the period 2009-35 with maximum and minimum 
gradients selected to be consistent with the 0.3°C–0.7°C range for the mean GMST in the period 2016–2035; 
2) To take into account the expected year-to-year variability of annual mean values, the resulting linear 
trends are offset by ±0.1°C. The value of 0.1°C is based on the standard deviation of annual means in 
CMIP5 control runs (to one significant figure). These calculations provide an indicative likely range for 
annual mean GMST, which is shown as the red hatched area in Figure 11.25b. Note that this range does not 
take into account the expected impact of any future volcanic eruptions. 
 
[INSERT FIGURE 11.25 HERE] 
Figure 11.25: Synthesis of near-term projections of global mean surface air temperature (GMST). a) Projections of 
annual mean GMST 1986–2050 (anomalies relative to 1986–2005) under all RCPs from CMIP5 models (grey and 
coloured lines, one ensemble member per model), with four observational estimates (HadCRUT4:(Morice et al., 2012); 
ERA-Interim: (Simmons et al., 2010); GISTEMP: (Hansen et al., 2010); NOAA: (Smith et al., 2008)) for the period 
1986–2012 (black lines). b) as a) but showing the 5–95% range of annual mean CMIP5 projections (using one 
ensemble member per model) for all RCPs using a reference period of 1986–2005 (light grey shade) and all RCPs using 
a reference period of 2006–2012, together with the observed anomaly for (2006–2012)–(1986–2005) of 0.16°C (dark 
grey shade). The percentiles for 2006 onwards have been smoothed with a 5-year running mean for clarity. The 
maximum and minimum values from CMIP5 using all ensemble members and the 1986–2005 reference period are 
shown by the grey lines (also smoothed). Black lines show annual mean observational estimates. The red hatched 
region shows the indicative likely range for annual mean GMST during the period 2016–2035 based on the “ALL RCPs 
Assessed” likely range for the 20-year mean GMST anomaly for 2016–2035, which is shown as a black bar in both 
panels b and c (see text for details). The temperature scale relative to pre-industrial climate on the right hand side 
assumes a warming of GMST prior to 1986–2005 of 0.61°C estimated from HadCRUT4. c) A synthesis of projections 
for the mean GMST anomaly for 2016–2035 relative to 1986–2005. The box and whiskers represent the 66% and 90% 
ranges. Shown are: unconstrained SRES CMIP3 and RCP CMIP5 projections; observationally constrained projections 
(Rowlands et al. (2012) for SRES A1B scenario, updated to remove simulations with large future volcanic eruptions; 
(Meehl and Teng, 2012) for RCP4.5 scenario, updated to include 14 CMIP5 models;Stott et al. (2013), based on 6 
CMIP5 models with unconstrained 66% ranges for these 6 models shown as unfilled boxes.); unconstrained projections 
for all four RCP scenarios using two reference periods as in panel b (light grey and dark grey shades, consistent with 
panel b); 90% range estimated using CMIP5 trends for the period 2012–2035 and the observed GMST anomaly for 
2012; an overall likely (>66%) assessed range for all RCP scenarios. The dots for the CMIP5 estimates show the 
maximum and minimum values using all ensemble members. The medians (or maximum likelihood estimate for 
(Rowlands et al. (2012)) are indicated by a grey band.  
 
The assessed likely range for GMST in the period 2016–2035 may also be used to assess the likelihood that 
GMST will cross policy-relevant levels, relative to pre-industrial conditions, by this time period (Joshi et al., 
2011). Using the 1850–1900 period as an estimate of pre-industrial climate, and the observed temperature 
rise between 1850–1900 and 1986–2005 of 0.61°C (estimated from the HadCRUT4 dataset (Morice et al., 
2012)) gives a likely range for the GMST anomaly in 2016–2035 of 0.91°C–1.31°C, and supports the 
following conclusions: it is more likely than not that the mean GMST for the period 2016–2035 will be more 
than 1°C above the mean for 1850–1900, and very unlikely that it will be more than 1.5°C above the 1850–
1900 mean (expert assessment, medium confidence). Additional information about the possibility of GMST 
crossing specific temperature levels is provided in Table 11.3, which shows the percentage of CMIP5 
models for which the projected change in GMST exceeds specific temperature levels, under each RCP 
scenario, in two time periods (Early century: 2016–2035 and Mid-century: 2046–2065), and also using the 
two different reference periods discussed under point (6) and illustrated in Figure 11.25. However, these 
percentages should not be interpreted as likelihoods because—as discussed in this section—there are sources 
of uncertainty not captured by the CMIP5 ensemble. Note finally that it is highly likely that specific 
temperature levels will be crossed temporarily in individual years before a permanent crossing is established 
(Joshi et al., 2011), but Table 11.3 is based on 20-year mean values. 
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Table 11.3: Percentage of CMIP5 models for which the projected change in global mean surface air temperature, 
relative to an estimate of pre-industrial climate, crosses the specified temperature levels, by the specified time periods 
and assuming the specified RCP scenarios. The projected temperature change relative to pre-industrial climate is 
calculated using the models’ projected temperature change relative to 1986–2005 plus the observed temperature change 
between 1850–1900 and 1986–2005 of 0.61°C (estimated from the HadCRUT4 dataset (Morice et al., 2012). The 
percentages in brackets use an alternative reference period for the model projections of 2006-2012, together with the 
observed temperature difference between 1986–2005 and 2006–2012 of 0.16°C. The definition of crossing is that the 
20-year mean exceeds the specified temperature level. Note that these percentages should not be interpreted as 
likelihoods because there are other sources of uncertainty (see discussion in Section 11.3.6.3). 
 
Scenario Early (2016–2035) Mid (2046–2065)

Temperature +1.0°C 
RCP 2.6 100% (84%) 100% (94%) 
RCP 4.5 98% (93%) 100% (100%) 
RCP 6.0 96% (80%) 100% (100%) 
RCP 8.5 100% (100%) 100% (100%) 

Temperature +1.5°C 
RCP 2.6 22% (0%) 56% (28%) 
RCP 4.5 17% (0%) 95% (86%) 
RCP 6.0 12% (0%) 92% (88%) 
RCP 8.5 33% (5%) 100% (100%) 

Temperature +2.0°C 
RCP 2.6 0% (0%) 16% (3%) 
RCP 4.5 0% (0%) 43% (29%) 
RCP 6.0 0% (0%) 32% (20%) 
RCP 8.5 0% (0%) 95% (90%) 

Temperature +3.0°C 
RCP 2.6 0% (0%) 0% (0%) 
RCP 4.5 0% (0%) 0% (0%) 
RCP 6.0 0% (0%) 0% (0%) 
RCP 8.5 0% (0%) 21% (5%) 

 
 
[START BOX 11.2 HERE] 
 
Box 11.2: Ability of Climate Models to Simulate Observed Regional Trends 
 
The ability of models to simulate past climate change on regional scales can be used to investigate whether 
the multi-model ensemble spread covers the forcing and model uncertainties. Agreement between observed 
and simulated regional trends, taking natural variability and model spread into account, would build 
confidence in near-term projections. Although large-scale features are simulated well (see Chapter 10), on 
sub-continental and smaller scales the observed trends are, in general, more often in the tails of the 
distribution of modelled trends than would be expected by chance fluctuations (Bhend and Whetton, 2012; 
Knutson et al., 2013; van Oldenborgh et al., 2013). Natural variability and model spread are larger at smaller 
scales (Stott et al., 2010), but this is not enough to bridge the gap between models and observations. 
Downscaling with RCMs does not affect seasonal mean trends except near mountains or coastlines in 
Europe (van Oldenborgh et al., 2009; van Haren et al., 2012). These results hold for both observed and 
modeled estimates of natural variability and for various analyses of the observations. Given the statistical 
nature of the comparisons, it is currently not possible to say in which regions observed discrepancies are due 
to coincidental natural variability and in which regions they are due to forcing or model deficiencies. These 
results show that in general the CMIP5 ensemble cannot be taken as a reliable regional probability forecast, 
but that the true uncertainty can be larger than the model spread indicated in the maps in this chapter and 
Annex I. 
 
Temperature 
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(Räisänen, 2007; Yokohata et al., 2012) compared regional linear temperature trends during 1955–2005 
(1961–2000) with corresponding trends in the CMIP3 ensemble. They found that the range of simulated 
trends captured the observed trend in nearly all locations. Using another metric, (Knutson et al., 2013) found 
that CMIP5 models did slightly better than CMIP3 in reproducing linear trends (see also Figure 10.2, Section 
10.3.1.1.2). The linear CMIP5 temperature trends are compared to the observed trends in Box 11.2, Figure 
1a-h. The rank histograms show the warm bias in global mean temperature (see Chapter 10) and some 
overconfidence, but within the inter-model spread. However, the apparent agreement appears to be for the 
wrong reason. Many of the models that appear to correctly simulate observed high regional trends do so 
because they have a high climate response (i.e., the global temperature rises quickly) and do not simulate the 
observed spatial pattern of trends (Kumar et al., 2013). To address his, (Bhend and Whetton, 2012; van 
Oldenborgh et al., 2013) use another definition of the local trend: the regression of the local temperature on 
the (low-pass filtered) global mean temperature. This definition separates the local temperature response 
pattern from the global-mean climate response. They find highly significant discrepancies between the 
CMIP3 and CMIP5 trend patterns and a variety of estimates of observed trend estimates. These 
discrepancies are defined relative to an error model that includes the (modelled or observed) natural 
variability, model spread and spatial autocorrelations. In the following areas were the observed and modelled 
trends show marked differences are noted. Areas of agreement are covered in Section 10.3.1.1.4. 
 
In December–February the observed Arctic amplification extends further south than modelled in Central 
Asia and north-western North America. In June–August southern Europe and North Africa have warmed 
significantly faster than both CMIP3 and CMIP5 models simulated (van Oldenborgh et al., 2009), this also 
holds for the Middle East. The observed Indo-Pacific warm pool trend is significantly higher than the 
modeled trend year-round (Shin and Sardeshmukh, 2011; Williams and Funk, 2011), and the North Pacific 
and the southeastern US and adjoining ocean trends were lower. Direct causes for many of these 
discrepancies are known (e.g., December–February circulation trends that differ between the observation and 
the models (Gillett et al., 2005; Gillett and Stott, 2009; van Oldenborgh et al., 2009; Bhend and Whetton, 
2012) or teleconnections from other areas with trend biases (Deser and Phillips, 2009; Meehl et al., 2012a), 
but the causes of the underlying discrepancies are often unknown. Possibilities include observational 
uncertainties (note however that the areas where the observations warm more than the models do not 
correspond to areas of increased urbanisation or irrigation, cf. Section 2.4.1.3), an underestimation of the 
low-frequency variability (Knutson et al., 2013) show evidence that this is not likely for temperature outside 
the tropics), unrealistic local forcing (e.g., aerosols ((Ruckstuhl and Norris, 2009)), or missing or 
misrepresented processes in models (e.g., fog (Vautard et al., 2009; Ceppi et al., 2012)). 
 
Precipitation 
 
In spite of the larger variability relative to the trends and observational uncertainties (cf. Section 2.5.1.2), 
annual mean regional linear precipitation trends have been found to differ significantly between observations 
and CMIP3 models, both in the zonal mean (Allan and Soden, 2007; Zhang et al., 2007b) and regionally 
(Räisänen, 2007). The comparison is shown in Box 11.2, Figure 1i-p for the CMIP5 half-year seasons used 
in Annex I, following (van Oldenborgh et al., 2013). In both half years the observations fall more often in 
the highest and lowest 5% than expected by chance fluctuations within the ensemble (grey area). The 
differences larger than the difference between the CRU and GPCC analyses (cf. Figure 2.30) are noted 
below. 
 
In Europe there are large-scale differences between observed trends and trends, both in GCMs and RCMs 
(Bhend and von Storch, 2008), which are ascribed to circulation change discrepancies in winter and in 
summer SST trend biases (Lenderink et al., 2009; van Haren et al., 2012) and the misrepresentation of 
Summer NAO teleconnections (Bladé et al., 2012). Central North America has become much wetter over 
1950–2012, especially in winter, which is not simulated by the CMIP5 models. Larger observed northwest 
Australian rainfall increases than in CMIP3 in summer are driven by ozone forcings in two climate models 
(Kang et al., 2011) and aerosols in another (Rotstayn et al., 2012). The Guinea Coast has become drier in the 
observations than in the models. The CMIP5 patterns seem to reproduce the observed ones somewhat better 
than the CMIP3 patterns (Bhend and Whetton, 2012), but the overconfidence implies that CMIP5 projections 
cannot be used as reliable precipitation forecasts. 
 
[INSERT BOX 11.2, FIGURE 1 HERE] 
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Box 11.2, Figure 1: a) Observed linear December to February temperature trend 1950–2012 (HadCRUT4.1.1.0) [°C 
per century], b) the equivalent CMIP5 ensemble mean trend, c) quantile of the observed trend in the ensemble, and d. 
the corresponding rank histogram, the grey line denotes the 90% band of intermodal fluctuations (following Annan and 
Hargreaves, 2010). e-h) Same for June to August. i-l) Same for October to March precipitation (GPCC v7) 1950–2010 
[% per century]. m-p) Precipitation in April to September. Grid boxes where less than 50% of the years have 
observations are left white. Based on (Räisänen, 2007; van Oldenborgh et al., 2013). 
 
[END BOX 11.2 HERE] 
 
 
[BEGIN FAQ 11.1 HERE] 
 
FAQ 11.1: If You cannot Predict the Weather Next Month, How can You Predict Climate for the 

Coming Decade?  
 
While weather and climate are intertwined, they are in fact different things. Weather is defined as the state 
of the atmosphere at a given time and place, and can change from hour to hour and day-to-day. Climate, on 
the other hand, generally refers to the statistics of weather conditions over a decade or more.  
 
An ability to predict future climate without the need to accurately predict weather is more commonplace that 
it might first seem. For example, at the end of spring, it can be accurately predicted that the average air 
temperature over the coming summer in Melbourne (for example) will very likely be higher than the average 
temperature during the most recent spring—even though the day-to-day weather during the coming summer 
cannot be predicted with accuracy beyond a week or so. This simple example illustrates that factors exist—
in this case the seasonal cycle in solar radiation reaching the Southern Hemisphere—that can underpin skill 
in predicting changes in climate over a coming period that does not depend on accuracy in predicting 
weather over the same period. 
 
The statistics of weather conditions used to define climate include long-term averages of air temperature and 
rainfall, as well as statistics of their variability, such as the standard deviation of year-to-year rainfall 
variability from the long-term average, or the frequency of days below 5°C. Averages of climate variables 
over long periods of time are called climatological averages. They can apply to individual months, seasons 
or the year as a whole. A climate prediction will address questions like: “How likely will it be that the 
average temperature during the coming summer will be higher than the long-term average of past summers?” 
or: “How likely will it be that the next decade will be warmer than past decades?” More specifically, a 
climate prediction might provide an answer to the question: “What is the probability that temperature (in 
China, for instance) averaged over the next ten years will exceed the temperature in China averaged over the 
past 30 years?” Climate predictions do not provide forecasts of the detailed day-to-day evolution of future 
weather. Instead, they provide probabilities of long-term changes to the statistics of future climatic variables.  
 
Weather forecasts, on the other hand, provide predictions of day-to-day weather for specific times in the 
future. They help to address questions like: “Will it rain tomorrow?” Sometimes, weather forecasts are given 
in terms of probabilities. For example, the weather forecast might state that: “the likelihood of rainfall in 
Apia tomorrow is 75%”.  
 
To make accurate weather predictions, forecasters need highly detailed information about the current state of 
the atmosphere. The chaotic nature of the atmosphere means that even the tiniest error in the depiction of 
‘initial conditions’ typically leads to inaccurate forecasts beyond a week or so. This is the so-called ‘butterfly 
effect’.  
 
Climate scientists do not attempt or claim to predict the detailed future evolution of the weather over coming 
seasons, years or decades. There is, on the other hand, a sound scientific basis for supposing that aspects of 
climate can be predicted, albeit imprecisely, despite the butterfly effect. For example, increases in long-lived 
atmospheric greenhouse gas concentrations tend to increase surface temperature in future decades. Thus, 
information from the past can and does help predict future climate.  
 
Some types of naturally occurring so-called ‘internal’ variability can—in theory at least—extend the 
capacity to predict future climate. Internal climatic variability arises from natural instabilities in the climate 
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system. If such variability includes or causes extensive, long-lived, upper ocean temperature anomalies, this 
will drive changes in the overlying atmosphere, both locally and remotely. The El Niño-Southern Oscillation 
phenomenon is probably the most famous example of this kind of internal variability. Variability linked to 
the El Niño-Southern Oscillation unfolds in a partially predictable fashion. The butterfly effect is present, 
but it takes longer to influence some of the variability linked to the El Nino-Southern Oscillation.  
 
Meteorological services and other agencies have exploited this. They have developed seasonal-to-interannual 
prediction systems which enable them to routinely predict seasonal climate anomalies with demonstrable 
predictive skill. The skill varies markedly from place to place and variable to variable. Skill tends to 
diminish the further the prediction delves into the future and in some locations there is no skill at all. “Skill” 
is used here in its technical sense: it is a measure of how much greater the accuracy of a prediction is, 
compared with the accuracy of some typically simple prediction method like assuming that recent anomalies 
will persist during the period being predicted.  
 
Weather, seasonal-to-interannual and decadal prediction systems are similar in many ways (e.g., they all 
incorporate the same mathematical equations for the atmosphere, they all need to specify initial conditions to 
kick-start predictions, and they are all subject to limits on forecast accuracy imposed by the butterfly effect). 
However, decadal prediction, unlike weather and seasonal-to-interannual prediction, is still in its infancy. 
Decadal prediction systems nevertheless exhibit a degree of skill in hindcasting near-surface temperature 
over much of the globe out to at least nine years. A ‘hindcast’ is a prediction of a past event in which only 
observations prior to the event are fed into the prediction system used to make the prediction. The bulk of 
this skill is thought to arise from external forcing. ‘External forcing’ is a term used by climate scientists to 
refer to a forcing agent outside the climate system causing a change in the climate system. This includes 
increases in the concentration of long-lived greenhouse gases. 
 
Theory indicates that skill in predicting decadal precipitation should be less than the skill in predicting 
decadal surface temperature, and hindcast performance is consistent with this expectation.  
 
Current research is aimed at improving decadal prediction systems, and increasing the understanding of the 
reasons for any apparent skill. Ascertaining the degree to which the extra information from internal 
variability actually translates to increased skill is a key issue. While prediction systems are expected to 
improve over coming decades, the chaotic nature of the climate system and the resulting butterfly effect will 
always impose unavoidable limits on predictive skill. Other sources of uncertainty exist. For example, as 
volcanic eruptions can influence climate but their timing and magnitude cannot be predicted, future 
eruptions provide one of a number of other sources of uncertainty. The shortness of the period with enough 
oceanic data to initialize and assess decadal predictions presents a major challenge. 
 
Finally, note that decadal prediction systems are designed to exploit both externally-forced and internally-
generated sources of predictability. Climate scientists distinguish between decadal predictions and decadal 
projections. Projections only exploit the predictive capacity arising from external forcing. While previous 
IPCC Assessment Reports focussed exclusively on projections, this report also assesses decadal prediction 
research and its scientific basis.  
 
[END FAQ 11.1 HERE] 
 
 
[BEGIN FAQ 11.2 HERE] 
 
FAQ 11.2: How Do Volcanic Eruptions Affect Climate and Our Ability to Predict Climate? 
 
Large volcanic eruptions affect the climate by injecting sulphur dioxide gas into the upper atmosphere (also 
called stratosphere), which reacts with water to form clouds of sulphuric acid droplets. These clouds reflect 
sunlight back to space, preventing its energy from reaching the Earth’s surface, thus cooling it, along with 
the lower atmosphere. These upper atmospheric sulphuric acid clouds also locally absorb energy from the 
sun, the Earth and the lower atmosphere, which heats the upper atmosphere (see FAQ 11.2, Figure 1). In 
terms of surface cooling, the 1991 Mt. Pinatubo eruption in the Philippines, for example, injected about 20 
million tons of sulphur dioxide into the stratosphere, cooling the Earth by about 0.5°C for up to a year. 
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Globally, eruptions also reduce precipitation, because the reduced incoming shortwave at the surface is 
compensated by a reduction in latent heating (i.e., in evaporation and hence rainfall). 
 
For the purposes of predicting climate, an eruption causing significant global surface cooling and upper 
atmospheric heating for the next year or so can be expected. The problem is that, while a volcano that has 
become more active can be detected, the precise timing of an eruption, or the amount of sulphur dioxide 
injected into the upper atmosphere and how it might disperse cannot be predicted. This is a source of 
uncertainty in climate predictions. 
 
Large volcanic eruptions produce lots of particles, called ash or tephra. However, these particles fall out of 
the atmosphere quickly, within days or weeks, so they do not affect the global climate. For example, the 
1980 Mount St. Helens eruption affected surface temperatures in the northwest United States for several 
days but, because it emitted little sulphur dioxide into the stratosphere, it had no detectable global climate 
impacts. If large, high-latitude eruptions inject sulphur into the stratosphere, they will only have an effect in 
the hemisphere where they erupted, and the effects will only last a year at most, as the stratospheric cloud 
they produce only has a lifetime of a few months. 
 
Tropical or subtropical volcanoes produce more global surface or tropospheric cooling. This is because the 
resulting sulphuric acid cloud in the upper atmosphere lasts between one and two years, and can cover much 
of the globe. However, their regional climatic impacts are difficult to predict, because dispersion of 
stratospheric sulfate aerosols depends heavily on atmospheric wind conditions at the time of eruption. 
Furthermore, the surface cooling effect is typically not uniform: because continents cool more than the 
ocean, the summer monsoon can weaken, reducing rain over Asia and Africa. The climatic response is 
further complicated by the fact that upper atmospheric clouds from tropical eruptions also absorb sunlight 
and heat from the Earth, which produces more upper atmosphere warming in the tropics than at high 
latitudes.  
 
[INSERT FAQ 11.2, FIGURE 1 HERE] 
FAQ 11.2, Figure 1: Schematic of how large tropical or sub-tropical volcanoes impact upper atmospheric 
(stratospheric) and lower atmospheric (tropospheric) temperatures. 
 
The largest volcanic eruptions of the past 250 years stimulated scientific study. After the 1783 Laki eruption 
in Iceland, there were record warm summer temperatures in Europe, followed by a very cold winter. Two 
large eruptions, an unidentified one in 1809, and the 1815 Tambora eruption caused the 'Year Without a 
Summer' in 1816. Agricultural failures in Europe and the United States that year led to food shortages, 
famine and riots. 
 
The largest eruption in more than 50 years, that of Agung in 1963, led to many modern studies, including 
observations and climate model calculations. Two subsequent large eruptions, El Chichón in 1982 and 
Pinatubo in 1991, inspired the work that led to our current understanding of the effects of volcanic eruptions 
on climate. 
 
Volcanic clouds only remain in the stratosphere for a couple of years, so their impact on climate is 
correspondingly short. But the impacts of consecutive large eruptions can last longer: for example, at the end 
of the 13th century there were four large eruptions—one every ten years. The first, in 1258 CE, was the 
largest in 1000 years. That sequence of eruptions cooled the North Atlantic Ocean and Arctic sea ice. 
Another period of interest is the three large, and several lesser, volcanic events during 1963–1991 (see 
Chapter 8 for how these eruptions effected atmospheric composition and reduced short wave radiation at the 
ground. 
 
Volcanologists can detect when a volcano becomes more active, but they cannot predict whether it will 
erupt, or if it does, how much sulphur it might inject into the stratosphere. Nevertheless, volcanoes affect the 
ability to predict climate in three distinct ways. First, if a violent eruption injects significant volumes of 
sulphur dioxide into the stratosphere, this effect can be included in climate predictions. There are substantial 
challenges and sources of uncertainty involved, such as collecting good observations of the volcanic cloud, 
and calculating how it will move and change during its lifetime. But, based on observations, and successful 
modelling of recent eruptions, some of the effects of large eruptions can be included in predictions. 
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The second effect is that volcanic eruptions are a potential source of uncertainty in our predictions. Eruptions 
cannot be predicted in advance, but they will occur, causing short-term climatic impacts on both local and 
global scales. In principle, this potential uncertainty can be accounted for by including random eruptions, or 
eruptions based on some scenario in our near-term ensemble climate predictions. This area of research needs 
further exploration. The future projections in this report do not include future volcanic eruptions. 
 
Thirdly, the historical climate record can be used, along with estimates of observed sulphate aerosols, to test 
the fidelity of our climate simulations. While the climatic response to explosive volcanic eruptions is a 
useful analogue for some other climatic forcings, there are limitations. For example, successfully simulating 
the impact of one eruption can help validate models used for seasonal and interannual predictions. But in this 
way not all the mechanisms involved in global warming over the next century can be validated, because 
these involve long term oceanic feedbacks, which have a longer time scale than the response to individual 
volcanic eruptions. 
 
[END FAQ 11.2 HERE] 
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Tables 1 

 2 

Table 11.1: Initialization methods used in models that entered CMIP5 near-term experiments. (Figures 11.3–11.7 have been prepared using those contributions with asterisk on top 3 

of the modelling center’s name.). 4 

 5 

CMIP5 Near-
Term Players CMIP5 

official 

model id 

AGCM OGCM 

Initialization Perturbation Aerosol 

Reference 

name of modeling 

center (or group) 
Atmosphere/Land Ocean sea ice 

anomaly 

assimilation? 
Atmos Ocean 

Concentration (C) 

/Emission (E) 

Direct(D)/

Indirect 

(I1,I2) 

(*) Beijing Climate 

Center, China 

Meteorological 

Administration 

(BCC) China 

BCC-CSM 

1.1 
2.8oL26 1oL40 no SST, T&S (SODA) no no 

perturbed 

atmosphere/ocean/land/

sea ice 
C D Xin et al. (2013) 

(*) Canadian Centre for 

Climate Modelling and 

Analysis 

(CCCMA) Canada

CanCM4 2.8oL35 1.4ox0.9oL40 ERA40/Interim 

SST 

(ERSST&OISST), 

T&S (SODA & 

GODAS) 

HadISST1.1 no ensemble assimilation E D, I1 
Merryfield et al. 

(2013) 

(*) Centro Euro-

Mediterraneo per I 

Cambiamenti Climatici 

(CMCC-CM) Italy 

CMCC-CM 0.75oL31 0.5 o -2o 

L31 
no 

SST, T&S (INGV 

ocean analysis) 

CMCC-CM 

climatology 
no ensemble assimilation C D, I1 

Bellucci et al. 
(2013) 

(*) Centre National de 

Recherches 

Metéorologiques, and 

Centre Européen de 

Recherche et Formation 

Avancées en Calcul 

Scientifique (CNRM-

CERFACS) France 

CNRM-
CM5 

1.4oL31 1oL42 no 
T&S (NEMOVAR- 

COMBINE) 
no no 

1st day 
atmospheric 
conditions 

no C D, I1 
Meehl et al. 

(2013d) 

National Centers for 

Environmental 

Prediction and Center 

for Ocean-Land-

Atmosphere Studies 

(NCEP and COLA) 

CFSv2-2011 0.9oL64 0.25-0.5oL40 
NCEP CFSR 

reanalysis 

NCEP CFSR 

 ocean analysis  

(NCEP runs) 
NCEP CFSR 

reanalysis 
no no no C D, I1 Saha et al. (2010) 

NEMOVAR-S4 
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USA ocean analysis 

(COLA runs) 

(*) EC-EARTH 

consortium (EC-

EARTH) 

Europe 

EC-EARTH 1.1oL62 1oL42 ERA40/Interim 
Ocean assimilation 

(ORAS4/NEMOVA

R S4) 

NEMO3.2-

LIM2 forced 

with DFS4.3  

no (KNMI & IC3) 

yes (SMHI) 

start dates 

and singular 

vectors 

Ensemble 

ocean 

assim 

(NEMOV

AR) 

C D 
Du et al. (2012) 
Hazeleger et al. 

(2013a) 

(*) Institut Pierre-Simon 

Laplace (IPSL) France 

IPSL-

CM5A-LR 

1.9x3.8o 
L39 2oL31 no 

SST anomalies 

(Reynolds 

observations) 

no yes no 
white 

noise on 

SST 

C D, I1 
Swingedouw et al. 

(2013) 

(*) 

AORI/NIES/JAMSTEC, 

Japan 

MIROC4h 0.6oL56 0.3oL48 

no 
SST, T&S (Ishii and 

Kimoto, 2009) 
no yes 

start dates and ensemble 

assimilation 
E D,I1,I2 Tatebe et al. (2012) 

MIROC5 1.4oL40 1.4oL50 

(*) Met Office Hadley 

Centre 

(MOHC) UK 

HadCM3 3.8oL19 1.3oL20 
ERA40/ECMWF 

operational analysis

SST, T&S (Smith 

and Murphy, 2007) 
HADISST yes, also full field no 

SST 
perturbati

on 
E D 

Smith et al. 
(2013a) 

(*) Max Planck Institute 

for Meteorology (MPI-

M) Germany 

MPI-ESM 

-LR 
1.9oL47 1.5oL40 

no 
T&S from forced 

OGCM 
no yes 1-day lagged C D 

Matei et al. 
(2012b) 

MPI-ESM 

-MR 
1.9oL95 0.4oL40 

(*) Meteorological 

Research Institute 

(MRI) Japan 

MRI-
CGCM3 1.1oL48 1oL51 no 

SST, T&S (Ishii and 

Kimoto, 2009) 
no yes 

start dates and ensemble 
assimilation E D,I1,I2 Tatebe et al. (2012) 

Global Modeling and 

Assimilation Office, 

(NASA) USA 

GEOS-5 
2.5 o x2o 

L72 
1oL50 MERRA 

T&S from ocean 

assimilation (GEOS 

iODAS) 

GEOS iODAS 

reanalysis 
no 

two-sided breeding 
method 

E D  

(*) National Center for 

Atmospheric Research 

(NCAR) USA 

CCSM4 1.3oL26 1.0oL60 No 

Ocean assimilation 

(POPDART) ice state from 
forced ocean-

ice GCM 
(strong salinity 

restoring for 
POPDART) 

no 

single atm 

from AMIP 

run

ensemble 

assimilati

on

E D 

 

ocean state from 

forced ocean-ice 

GCM 

staggered 

atm start 

dates from 

uninitialized 

run

single 

member 

ocean 

Yeager et al. 
(2012) 
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(*) Geophysical Fluid 

Dynamics Laboratory 

(GFDL) USA 

GFDL-CM 

2.1 
2.5oL24 1oL50 NCEP reanalysis 

ocean observations 

of 3-D T & S & SST
no no Coupled EnKF C D Yang et al. (2013) 

LASG, Institute of 

Atmospheric Physics, 

Chinese Academy of 

Sciences; and CESS, 

Tsinghua University 

China 

FGOALS-g2 2.8oL26 1oL30 no 
SST, T&S (Ishii et 

al., 2006) 
no no 

A simplified scheme of 
3DVar C D, I1 Wang et al. (2013) 

LASG, Institute of 

Atmospheric Physics, 

Chinese Academy of 

Sciences 

China, Tsinghua 

University China 

FGOALS-s2 2.8oL26 1oL30 no T&S (EN3_v2a) no yes 
Incremental Analysis 

Updates (IAU) scheme
C D 

Wu and Zhou 

(2012) 

 1 
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Figures 
 
 

 
Box 11.1, Figure 1: The evolution of observation-based global mean temperature T (the black line) as the difference 
from the 1986–2005 average together with an ensemble of externally forced simulations to 2005 and projections based 
on the RCP4.5 scenario thereafter (the yellow lines). The model-based estimate of the externally forced component Tf 
(the red line) is the average over the ensemble of simulations. To the extent that the red line correctly estimates the 
forced component, the difference between the black and red lines is the internally generated component Ti for global 
mean temperature. An ensemble of forecasts of global annual mean temperature, initialized in 1998, is plotted as thin 
purple lines and their average, the ensemble mean forecast, as the thick green line. The grey areas along the axis 
indicate the presence of external forcing associated with volcanoes. 
  



Final Draft (7 June 2013) Chapter 11 IPCC WGI Fifth Assessment Report 

Do Not Cite, Quote or Distribute 11-91 Total pages: 123 

 

 
 
Box 11.1, Figure 2: A schematic illustrating the progression from an initial-value based prediction at short timescales 
to the forced boundary-value problem of climate projection at long timescales. Decadal prediction occupies the middle 
ground between the two (based on Meehl et al. (2009b)). 
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Box 11.1, Figure 3: A schematic representation of prediction in terms of probability. The probability distribution 
corresponding to a forced simulation is in red with the deeper shades indicating higher probability. The probabilistic 
forecast is in blue. The sharply peaked forecast distribution based on initial conditions broadens with time as the 
influence of the initial conditions fades until the probability distribution of the initialized prediction approaches that of 
an uninitialized projection (based on Branstator and Teng (2010)). 
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Box 11.1, Figure 4: An example of the relative importance of initial conditions and external forcing for climate 
prediction and predictability. The global average of the correlation skill score of ensemble mean initialized forecasts are 
plotted as solid orange lines and the corresponding model-based predictability measure as dashed orange lines. The 
green lines are the same quantities but for uninitialized climate simulations. Results are for temperature averaged over 
periods from a month to a decade. Values plotted for the monthly average correspond to the first month, those for the 
annual average to the first year and so on up to the decadal average (based on Boer et al. (2013)). 
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Figure 11.1: The potential predictability of five-year means of temperature (lower panel), the contribution from the 
forced component (middle panel) and from the internally generated component (upper panel). These are multi-model 
results from CMIP5 RCP4.5 scenario simulations from 17 coupled climate models following the methodology of Boer 
(2011). The results apply to the early 21st century. 
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Figure 11.2: Time series of global-mean sea surface temperature from the a) direct model output and b) anomalies of 
the CMIP5 multi-model initialized hindcasts. Results for each forecast system are plotted with a different colour, with 
each line representing an individual member of the ensemble. Results for the start dates 1961, 1971, 1981, 1991 and 
2001 are shown, while the model and observed climatologies to obtain the anomalies in panel b have been estimated 
using data from start dates every five years. The reference data (ERSST) is drawn in black. All time series have been 
smoothed out with a 24-month centred moving average that filters out the seasonal cycle and removes data for the first 
and last years of each time series. 
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Figure 11.3: Decadal prediction forecast quality of several climate indices. Top row: Time series of the 2–5 year 
average ensemble-mean initialized hindcast anomalies and the corresponding non-initialized experiments for three 
climate indices: global-mean temperature (MGST, left) and the Atlantic multidecadal variability (AMV, right). The 
observational time series, GISS global-mean temperature and ERSST for the AMV, are represented with dark grey 
(positive anomalies) and light grey (negative anomalies) vertical bars, where a four-year running mean has been applied 
for consistency with the time averaging of the predictions. Predicted time series are shown for the CMIP5 Init (solid) 
and NoInit (dotted) simulations with hindcasts started every five years over the period 1960–2005. The lower and upper 
quartile of the multi-model ensemble are plotted using thin lines. The AMV index was computed as the SST anomalies 
averaged over the region Equator –60ºN and 80ºW–0ºW minus the SST anomalies averaged over 60ºS–60ºN. Note that 
the vertical axes are different for each time series. Middle row: Correlation of the ensemble-mean prediction with the 
observational reference along the forecast time for four-year averages of the three sets of CMIP5 hindcasts for Init 
(solid) and NoInit (dashed). The one-sided 95% confidence level with a t distribution is represented in grey. The 
effective sample size has been computed taking into account the autocorrelation of the observational time series. A two-
sided t test (where the effective sample size has been computed taking into account the autocorrelation of the 
observational time series) has been used to test the differences between the correlation of the initialized and non-
initialized experiments, but no differences where found statistically significant with a confidence equal or higher than 
90%. Bottom row: Root mean square error of the ensemble-mean prediction along the forecast time for four-year 
averages of the CMIP5 hindcasts for Init (solid) and NoInit (dashed). A two-sided F test (where the effective sample 
size has been computed taking into account the autocorrelation of the observational time series) has been used to test 
the ratio between the RMSE of the Init and NoInit, and those forecast times with differences statistically significant 
with a confidence equal or higher than 90% are indicated with an open square. Adapted from (Doblas-Reyes et al., 
2013). 
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Figure 11.4: a) Root mean square skill score of the near surface air temperature forecast quality for the forecast time 2-
5 years from the multi-model ensemble mean of the CMIP5 Init experiment with five-year interval between start dates 
over the period 1960–2005. A combination of temperatures from GHCN/CAMS air temperature over land, ERSST and 
GISTEMP 1200 over the polar areas is used as a reference. Black dots correspond to the points where the skill score is 
statistically significant with 95% confidence using a one-sided F-test taking into account the autocorrelation of the 
observation minus prediction time series. b) Ratio between the root mean square error of the ensemble mean of Init and 
NoInit. Dots are used for the points where the ratio is significantly above or below one with 90% confidence using a 
two-sided F-test taking into account the autocorrelation of the observation minus prediction time series. Contours are 
used for areas where the ratio of at least 75% of the single forecast systems is either above or below one agreeing with 
the value of the ratio in the multi-model ensemble. Poorly observationally sampled areas are masked in grey. The model 
original data have been bilinearly interpolated to the observational grid. The ensemble mean of each forecast system has 
been estimated before computing the multi-model ensemble mean. Adapted from (Doblas-Reyes et al., 2013). 
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Figure 11.5: Attributes diagram for the CMIP5 multi-model decadal initialized (panels a and c) and non-initialized 
(panels b and d) hindcasts for the event ‘surface air temperature anomalies below the lower tercile over a) and b) the 
global oceans (60ºN–60ºS) and c) and d) the North Atlantic (87.5ºN–30ºN, 80ºW–10ºW) for the forecast time 2–5 
years. The red bullets in the figure correspond to the number of probability bins (10 in this case) used to estimate 
forecast probabilities. The size of the bullets represents the number of forecasts in a specific probability category and is 
a measure of the sharpness (or variance of the forecast probabilities) of the predictions. The blue horizontal and vertical 
lines indicate the climatological frequency of the event in the observations and the mean forecast probability, 
respectively. Grey vertical bars indicate the uncertainty in the observed frequency for each probability category 
estimated at 95% level of confidence with a bootstrap resampling procedure based on 1000 samples. The longer the 
bars, the more the vertical position of the bullets may change as new hindcasts become available. The black dashed line 
separates skilful from unskilled regions in the diagram in the Brier skill score sense. The Brier skill score with respect 
to the climatological forecast is drawn in the top left corner of each panel. Adapted from (Corti et al., 2012). 
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Figure 11.6: a) Root mean square skill score of the precipitation for the forecast time 2–5 years from the multi-model 
ensemble mean of the CMIP5 Init experiment with five-year interval between start dates over the period 1960–2005. 
GPCC precipitation is used as a reference. Black dots correspond to the points where the skill score is statistically 
significant with 95% confidence using a one-sided F-test taking into account the autocorrelation of the observation 
minus prediction time series. b) Ratio between the root mean square error of the ensemble mean of Init and NoInit. Dots 
are used for the points where the ratio is significantly above or below one with 90% confidence using a two-sided F-test 
taking into account the autocorrelation of the observation minus prediction time series. Contours are used for areas 
where the ratio of at least 75% of the single forecast systems is either above or below one agreeing with the value of the 
ratio in the multi-model ensemble. The model original data have been bilinearly interpolated to the observational grid. 
The ensemble mean of each forecast system has been estimated before computing the multi-model ensemble mean. 
Adapted from (Doblas-Reyes et al., 2013). 
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Figure 11.7: Ratio between the spread around the ensemble mean and the root mean square error of the ensemble-mean 
prediction of Init and NoInit for the forecast time 2–5 years with five-year interval between start dates over the period 
1960–2005. A combination of temperatures from GHCN/CAMS air temperature over land, ERSST v3b over sea and 
GISTEMP 1200 over the polar areas is used as a reference to compute the RMSE. Adapted from (Doblas-Reyes et al., 
2013). 
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Figure 11.8: Sources of uncertainty in climate projections as a function of lead time based on an analysis of CMIP5 
results. a) Projections of global mean decadal mean surface air temperature to 2100 together with a quantification of the 
uncertainty arising from internal variability (orange), model spread (blue), and RCP scenario spread (green). b) shows 
the signal-to-uncertainty ratio for various global and regional averages. The signal is defined as the simulated multi-
model mean change in surface air temperature relative to the simulated mean surface air temperature in the period 
1986–2005, and the uncertainty is defined as the total uncertainty. c), d), e), f) show the fraction of variance explained 
by each source of uncertainty for: global mean decadal and annual mean temperature (c), European (30°N–
75°N, 10°W–40°E) decadal mean boreal winter (December to February) temperature (d) and precipitation (f), and East 
Asian (5°N–45°N, 67.5°E–130°E) decadal mean boreal summer (June to August) precipitation (e). See text and 
Hawkins and Sutton (2009) and Hawkins and Sutton (2011) for further details. 
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Figure 11.9: a) Projections of global mean, annual mean surface air temperature 1986–2050 (anomalies relative to 
1986–2005) under RCP4.5 from CMIP5 models (blue lines, one ensemble member per model), with four observational 
estimates (HadCRUT3: Brohan et al. (2006); ERA-Interim: Simmons et al. (2010); GISTEMP: Hansen et al., 2010; 
NOAA: Smith et al. (2008) for the period 1986–2011 (black lines); b) as in a) but showing the 5–95% range (grey and 
blue shades, with the multi-model median in white) of annual mean CMIP5 projections using one ensemble member per 
model from RCP4.5 scenario, and annual mean observational estimates (solid black line). The maximum and minimum 
values from CMIP5 are shown by the grey lines. Red hatching shows 5–95% range for predictions initialized in 2006 
for 14 CMIP5 models applying the Meehl and Teng (2012) methodology. Black hatching shows the 5–95% range for 
predictions initialized in 2011 for 8 models from Smith et al. (2013b). c) as a) but showing the 5–95% range (grey and 
blue shades, with the multi-model median in white) of decadal mean CMIP5 projections using one ensemble member 
per model from RCP4.5 scenario, and decadal mean observational estimates (solid black line). The maximum and 
minimum values from CMIP5 are shown by the grey lines. The dashed black lines show an estimate of the projected 5–
95% range for decadal mean global mean surface air temperature for the period 2016–2040 derived using the ASK 
methodology applied to 6 CMIP5 GCMs (from Stott et al. (2013). The red line shows a statistical prediction based on 
the method of Lean and Rind (2009), updated for RCP4.5. 
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Figure 11.10: CMIP5 multi-model ensemble mean of projected changes in DJF and JJA surface air temperature for the 
period 2016–2035 relative to 1986–2005 under RCP4.5 scenario (left panels). The right panels show an estimate of the 
model-estimated internal variability (standard deviation of 20-year means). Hatching in left-hand panels indicates areas 
where projected changes are small compared to the internal variability (i.e., smaller than one standard deviation of 
estimated internal variability), and stippling indicates regions where the multi-model mean projections deviate 
significantly from the simulated 1986–2005 period (by at least two standard deviations of internal variability) and 
where at least 90% of the models agree on the sign of change. The number of models considered in the analysis is listed 
in the top-right portion of the panels; from each model one ensemble member is used. See Box 12.1 in Chapter 12 for 
further details and discussion. Technical details are in Annex I. 
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Figure 11.11: Time of Emergence (ToE) of significant local warming derived from 37 CMIP5 models under the 
RCP4.5 scenario. Warming is quantified as the half-year mean temperature anomaly relative to 1986–2005, and the 
noise as the standard deviation of half-year mean temperature derived from a control simulation of the relevant model. 
Central panels show the median time at which the signal-to-noise ratio exceeds a threshold value of 1 for (left) the 
October to March half year and (right) the April to September half year, using a spatial resolution of 2.5° × 2.5°. 
Histograms show the distribution of ToE for area averages over the regions indicated obtained from the different 
CMIP5 models. Full details of the methodology may be found in Hawkins and Sutton (2012). 
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Figure 11.12: CMIP5 multi-model ensemble mean of projected changes (%) in precipitation for 2016–2035 relative to 
1986–2005 under RCP4.5 for the four seasons. The number of CMIP5 models used is indicated in the upper-right 
corner. Hatching and stippling as in Figure 11.10.   
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Figure 11.13: CMIP5 multi-model projections of changes in annual and zonal mean (a) precipitation (%) and (b) 
precipitation minus evaporation (mm/day) for the period 2016–2035 relative to 1986–2005 under RCP4.5. The light 
blue denotes the 5–95% range, the dark blue the 17–83% range of model spread. The grey indicates the 1σ range of 
natural variability derived from the pre-industrial control runs (see Annex I for details). 
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Figure 11.14: CMIP5 multi-model annual mean projected changes for the period 2016–2035 relative to 1986–2005 
under RCP4.5 for: (a) evaporation (%), (b) evaporation minus precipitation (E-P, mm day–1), (c) total runoff (%), (d) 
soil moisture in the top 10 cm (%), (e) relative change in specific humidity (%), and (f) absolute change in relative 
humidity (%). The number of CMIP5 models used is indicated in the upper-right corner of each panel. Hatching and 
stippling as in Figure 11.10. 
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Figure 11.15: CMIP5 multi-model ensemble mean of projected changes [m/s] in zonal (west-to-east) wind at 850hPa 
for 2016–2035 relative to 1986–2005 under RCP4.5. The number of CMIP5 models used is indicated in the upper-right 
corner. Hatching and stippling as in Figure 11.10. 
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Figure 11.16: Projected changes in the annual-averaged poleward edge of the Hadley Circulation (horizontal axis) and 
sub-tropical dry zones (vertical axis) based on 15 AOGCMs from the CMIP5 (Taylor et al., 2012) multi-model 
ensemble, under 21st century RCP4.5. Orange symbols show the change in the northern edge of the Hadley 
Circulation/dry zones, while blue symbols show the change in the southern edge of the Hadley Circulation/dry zones. 
Open circles indicate the multi-model average, while horizontal and vertical colored lines indicate the ±1-standard 
deviation range for internal climate variability estimated from each model. Values referenced to the 1986–2005 
climatology. Figure based on the methodology of (Lu et al., 2007). 
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Figure 11.17: Global projections of the occurrence of (a) warm days (TX90p), (b) cold days (TX10p), and (c) 
precipitation amount from very wet days (R95p). Results are shown from CMIP5 for the RCP2.6, RCP4.5 and RCP8.5 
scenarios. Solid lines indicate the ensemble median and shading indicates the interquartile spread between individual 
projections (25th and 75th percentiles). The specific definitions of the indices shown are (a) percentage of days annually 
with daily maximum surface air temperature (Tmax) exceeding the 90th percentile of Tmax for 1961–1990, (b) percentage 
of days with Tmax below the 10th percentile, and (c) percentage change relative to 1986–2005 of the annual precipitation 
amount from daily events above the 95th percentile. From Sillmann et al. (2013). 
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Figure 11.18: European-scale projections from the ENSEMBLES regional climate modelling project for 2016–2035 
relative to 1986–2005, with top and bottom panels applicable to JJA and DJF, respectively. For temperature, projected 
changes (°C) are displayed in terms of ensemble mean changes of (a, c) mean seasonal surface temperature, and (b, d) 
the 90th percentile of daily maximum temperatures. For precipitation, projected changes (%) are displayed in terms of 
ensemble mean changes of (e, g) mean seasonal precipitation and (f, h) the 95th percentile of daily precipitation. The 
stippling in (e-h) highlights regions where 80% of the models agree in the sign of the change (for temperature all 
models agree on the sign of the change). The analysis includes the following 10 RCM-GCM simulation chains for the 
SRES A1B scenario (naming includes RCM group and GCM simulation): HadRM3Q0-HadCM3Q0, ETHZ-
HadCM3Q0, HadRM3Q3-HadCM3Q3, SMHI-HadCM3Q3, HadRM3Q16-HadCM3Q16, SMHI-BCM, DMI-ARPEGE, 
KNMI-ECHAM5, MPI-ECHAM5, DMI-ECHAM5 (Rajczak et al. (2013). 
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Figure 11.19: Projected changes in annual-averaged, globally-averaged, surface ocean temperature based on twelve 
AOGCMs from the CMIP5 (Meehl et al., 2007b) multi-model ensemble, under 21st century Scenarios RCP2.6, 
RCP4.5, RCP6.0 and RCP8.5. Shading indicates the 90% range of projected annual global-mean surface temperature 
anomalies. Anomalies computed against the 1986–2005 average from the historical simulations of each model. 
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Figure 11.20: CMIP5 multi-model ensemble mean of projected changes in sea surface temperature (left panel; °C) and 
sea surface salinity (right panel; practical salinity units) for 2016–2035 relative to 1986–2005 under RCP4.5. The 
number of CMIP5 models used is indicated in the upper-right corner. Hatching and stippling as in Figure11.10. 
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Figure 11.21: Projections for CH4 (a) anthropogenic emissions (Mt CH4 yr–1) and (b) atmospheric abundances (ppb) for 
the four RCP scenarios (2010–2100). Natural emissions in 2010 are estimated to be 202 ± 35 Mt CH4 yr–1 (see Chapter 
8). The thick solid lines show the published RCP2.6 (light blue), RCP4.5 (dark blue), RCP6.0 (orange), and RCP8.5 
(red) values. Thin lines with markers show values from this assessment (denoted as RCPn.n&, following methods of 
(Prather et al., 2012; Holmes et al., 2013): red plus, RCP8.5; orange square, RCP6.0; light blue circle, RCP4.5; dark 
blue asterisk, RCP2.6. The shaded region shows the likely (68% confidence) range from the Monte Carlo calculations 
that consider uncertainties, including in current anthropogenic emissions. 
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Figure 11.22: Changes in surface O3 (ppb) between year 2000 and 2030 driven by climate alone (CLIMATE; green) or 
driven by emissions alone, following CLE (black), MFR (grey), SRES (blue), and RCP (red) emission scenarios. 
Results are reported globally and for the four northern mid-latitude source regions used by the Task Force on 
Hemispheric Transport of Air Pollution (HTAP, 2010a). Where two vertical bars are shown (CLE, MFR, SRES ), they 
represent the multi-model standard deviation of the annual mean based on (left bar; SRES A2 only) the 
ACCENT/Photocomp study (Dentener et al., 2006) and (right bar) the parametric HTAP ensemble (Wild et al., 2012). 
Under Global, the leftmost (dashed green) vertical bar denotes the spatial range in climate-only changes from one 
model Stevenson et al. (2005) while the green square shows global annual mean climate-only changes in another model 
(Unger et al., 2006b). Under Europe, the dashed green bar denotes the range of climate-only changes in summer daily 
maximum O3 in one model (Kesik et al., 2006). Adapted from Figure 3 of Fiore et al. (2012). 
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Figure 11.23a: Projected changes in annual-mean surface O3 (ppb mole fraction) from 2000 to 2100 following the RCP 
scenarios (8.5 red, 6.0 orange, 4.5 light blue, 2.6 dark blue). Results in each box are averaged over the designated 
coloured land regions. Continuous coloured lines and shading denote the average and full range of 4 chemistry-climate 
models (GFDL-CM3, GISS-E2-R, and NCAR-CAM3.5 from CMIP5 plus LMDz-ORINCA). Coloured dots and 
vertical black bars denote the average and full range of the ACCMIP models (CESM-CAM-superfast, CICERO-
OsloCTM2, CMAM, EMAC-DLR, GEOSCCM, GFDL-AM3, HadGEM2, MIROC-CHEM, MOCAGE, NCAR-
CAM3.5, STOC-HadAM3, UM-CAM) for decadal time slices centered on 2010, 2030, 2050 and 2100. Participation in 
the decadal slices ranges from 2 to 12 models (see (Lamarque et al., 2013)). Changes are relative to the 1986–2005 
reference period for the CMIP5 transient simulations, and relative to the average of the 1980 and 2000 decadal time 
slices for the ACCMIP ensemble. The average value and model standard deviation for the reference period is shown in 
the top of each panel for CMIP5 models (left) and ACCMIP models (right). In cases where multiple ensemble members 
are available from a single model, they are averaged prior to inclusion in the multi-model mean. Adapted from (Fiore et 
al., 2012). 
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Figure 11.23b: Projected changes in annual-mean surface PM2.5 (micrograms m–3 of aerosols with diameter less than 
2.5 micrometers) from 2000 to 2100 following the RCP scenarios (8.5 red, 6.0 orange, 4.5 light blue, 2.6 dark blue). 
PM2.5 values are calculated as the sum of individual aerosol components (black carbon + organic carbon + sulfate + 
secondary organic aerosol + 0.1*dust + 0.25*sea salt). Nitrate was not reported for most models and is not included 
here. See Figure 11.23a for details, but note that fewer models contribute: GISS-E2-R and GFDL-CM3 from CMIP5; 
CICERO-OsloCTM2, GEOSCCM, GFDL-AM3, HadGEM2, MIROC-CHEM, and NCAR-CAM3.5 from ACCMIP. 
Adapted from Fiore et al. (2012). 
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Figure 11.24a: Near-term increase in global mean surface air temperatures (°C) across scenarios. Increases in 10-year 
mean (2016–2025, 2026–2035, 2036–2045 and 2046–2055) relative to the reference period (1986–2005) of the globally 
averaged surface air temperatures. Results are shown for the CMIP5 model ensembles (see Annex I for listing of 
models included) for RCP2.6 (dark blue), RCP4.5 (light blue), RCP6.0 (orange), and RCP8.5 (red) and the CMIP3 
model ensemble (22 models) for SRES A1b (black). The multi-model median (square), 17–83% range (wide boxes), 5–
95% range (whiskers) across all models are shown for each decade and scenario. Values are provided in Table AII.7.5. 
Also shown are best estimates for a UNEP scenario (UNEP-ref, gray upward triangles) and one that implements 
technological controls on methane emissions (UNEP CH4, red downward-pointing triangles) (UNEP and WMO, 2011; 
Shindell et al., 2012a). Both UNEP scenarios are adjusted to reflect the 1986–2005 reference period. The right-hand 
floating axis shows increases in global mean surface air temperature relative to pre-industrial era (0.61°C) defined from 
the difference between 1850–1900 and 1986–2005 in the HadCRUT4 global mean temperature analysis (Chapter 2 and 
Table AII.1.3). Note that uncertainty remains on how to match the 1986–2005 reference period in observations with that 
in CMIP5 results, see discussion of Figure 11.25.  
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Figure 11.24b: Global maps of near-term differences in surface air temperature across the RCP scenarios. Differences 
between (RCP8.5) and low (RCP2.6) scenarios for the CMIP5 model ensemble (31 models) are shown for averages 
over 2016–2035 (left) and 2036–2055 (right) in boreal winter (DJF; top row) and summer (JJA; bottom row). 
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Figure 11.25: Synthesis of near-term projections of global mean surface air temperature (GMST). a) Projections of 
annual mean GMST 1986–2050 (anomalies relative to 1986–2005) under all RCPs from CMIP5 models (grey and 
coloured lines, one ensemble member per model), with four observational estimates (HadCRUT4:(Morice et al., 2012); 
ERA-Interim: (Simmons et al., 2010); GISTEMP: (Hansen et al., 2010); NOAA: (Smith et al., 2008)) for the period 
1986–2012 (black lines). b) as a) but showing the 5–95% range of annual mean CMIP5 projections (using one ensemble 
member per model) for all RCPs using a reference period of 1986–2005 (light grey shade) and all RCPs using a 
reference period of 2006–2012, together with the observed anomaly for (2006–2012)–(1986–2005) of 0.16°C (dark 
grey shade). The percentiles for 2006 onwards have been smoothed with a 5-year running mean for clarity. The 
maximum and minimum values from CMIP5 using all ensemble members and the 1986–2005 reference period are 
shown by the grey lines (also smoothed). Black lines show annual mean observational estimates. The red hatched 
region shows the indicative likely range for annual mean GMST during the period 2016–2035 based on the “ALL RCPs 
Assessed” likely range for the 20-year mean GMST anomaly for 2016–2035, which is shown as a black bar in both 
panels b and c (see text for details). The temperature scale relative to pre-industrial climate on the right hand side 
assumes a warming of GMST prior to 1986–2005 of 0.61°C estimated from HadCRUT4. c) A synthesis of projections 
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for the mean GMST anomaly for 2016–2035 relative to 1986–2005. The box and whiskers represent the 66% and 90% 
ranges. Shown are: unconstrained SRES CMIP3 and RCP CMIP5 projections; observationally constrained projections 
(Rowlands et al. (2012) for SRES A1B scenario, updated to remove simulations with large future volcanic eruptions; 
(Meehl and Teng, 2012) for RCP4.5 scenario, updated to include 14 CMIP5 models;Stott et al. (2013), based on 6 
CMIP5 models with unconstrained 66% ranges for these 6 models shown as unfilled boxes.); unconstrained projections 
for all four RCP scenarios using two reference periods as in panel b (light grey and dark grey shades, consistent with 
panel b); 90% range estimated using CMIP5 trends for the period 2012–2035 and the observed GMST anomaly for 
2012; an overall likely (>66%) assessed range for all RCP scenarios. The dots for the CMIP5 estimates show the 
maximum and minimum values using all ensemble members. The medians (or maximum likelihood estimate for 
(Rowlands et al. (2012)) are indicated by a grey band.  
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Box 11.2, Figure 1: a) Observed linear December to February temperature trend 1950–2012 (HadCRUT4.1.1.0) [°C 
per century], b) the equivalent CMIP5 ensemble mean trend, c) quantile of the observed trend in the ensemble, and d. 
the corresponding rank histogram, the grey line denotes the 90% band of intermodal fluctuations (following Annan and 
Hargreaves, 2010). e-h) Same for June to August. i-l) Same for October to March precipitation (GPCC v7) 1950–2010 
[% per century]. m-p) Precipitation in April to September. Grid boxes where less than 50% of the years have 
observations are left white. Based on (Räisänen, 2007; van Oldenborgh et al., 2013). 
 

 
 
FAQ 11.2, Figure 1: Schematic of how large tropical or sub-tropical volcanoes impact upper atmospheric 
(stratospheric) and lower atmospheric (tropospheric) temperatures.  


